Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 91, Issue 5, pp 1127–1137 | Cite as

On Numerical Simulation of the Hydrodynamics and Mixing of Gas Flows in a Vortex Chamber

  • E. A. Pitsukha
Article
  • 8 Downloads

Numerical simulation was carried out in three-dimensional and axisymmetric formulations for the hydrodynamics and mixing of bottom- and tangentially blown air with different temperatures in a cyclone chamber with local supply of tangentially blown air. To calculate vortex flows in the chamber, use was made of the most popular turbulence models k–ε, k–ω, and SA. It has been established that the best correspondence between the results of calculation and experimental data on hydrodynamic parameters (velocity and pressure) and air mixing under nonisothermal conditions is furnished by the k–ε and k–ω models of turbulence. Good agreement of the results of numerical simulation of vortex flows in the indicated chamber in three-dimensional and axisymmetric formulations has been obtained.

Keywords

cyclone chamber bubbling bed model of turbulence mixing temperature tangential velocity longitudinal velocity bottom blowing full pressure axisymmetric flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Knorre and M. A. Nadzharov (Eds.), Cyclone Furnaces [in Russian], Gos. Énerg. Izd., Moscow–Leningrad (1958).Google Scholar
  2. 2.
    I. I. Smul′skii, Aerodynamics and Processes in Vortex Chambers [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  3. 3.
    A. B. Reznyakov (Ed.), Heat Engineering Principles of Cyclone Furnace and Technological Processes [in Russian], Nauka, Alma-Ata (1974).Google Scholar
  4. 4.
    M. I. Devyaterikova and P. M. Mikhailov, Concerning the infl uence of end-face fl ows-over on the aerodynamics of the vortex chamber, Tr. Leningradsk. Politekh. Inst., Énergomashinostr., Issue 297, 52–57 (1968).Google Scholar
  5. 5.
    M. I. Devyaterikova and P. M. Mikhailov, On the infl uence of the vortex chamber geometry on end-face fl ows-over, Tr. Leningradsk. Politekh. Inst., Énergomashinostr., Issue 310, 122–126 (1969).Google Scholar
  6. 6.
    E. A. Pitsukha, Yu. S. Teplitskii, V. A. Borodulya, E. P. Volchkov, N. A. Dvornikov, and V. V. Lukashov, Investigation of the structure of swirling fl ows in a cyclone chamber under various conditions of gas inlet and outlet, J. Eng. Phys. Thermophys., 85, No. 2, 324–2338 (2012).CrossRefGoogle Scholar
  7. 7.
    E. A. Pitsukha, Yu. S. Teplitskii , and V. A. Borodulya, Investigation of fl ows in a vortex-bed chamber, J. Eng. Phys. Thermophys., 85, No. 5, 1025–1033 (2012).CrossRefGoogle Scholar
  8. 8.
    E. A. Pitsukha, Yu. S. Teplitskii, and V. A. Borodulya, On the vortex ejection in a chamber with a swirling air fl ow, J. Eng. Phys. Thermophys., 86, No. 1, 40–45 (2013).CrossRefGoogle Scholar
  9. 9.
    E. A. Pitsukha, Numerical simulation of fl ows in a cyclone chamber with different conditions of air inlet and outlet, J. Eng. Phys. Thermophys., 87, No. 5, 1022–1029 (2014).CrossRefGoogle Scholar
  10. 10.
    I. L. Artemov and A. V. Shvab, Numerical investigation of the hydrodynamics of a twisted fl ow in a vortex chamber based on the two-parameter model of turbulence, J. Eng. Phys. Thermophys., 74, No. 3, 698–703 (2001).CrossRefGoogle Scholar
  11. 11.
    S. V. Karpov, É. N. Saburov, and A. V. Bykov, Aerodynamics of cyclone facilities under the gas inlet and outlet conditions close to limiting ones, in: Proc. 4th Russ. Nat. Heat Transf. Conf., 2, 141–144 (2006).Google Scholar
  12. 12.
    É. P. Volchkov, N. A. Dvornikov, and R. Kh. Abdrakhmanov, Investigation of the vortex chamber aerodynamics, in: Proc. 4th Russ. Nat. Heat Transf. Conf., 6, 178–181 (2006).Google Scholar
  13. 13.
    E. A. Pitsukha, É. K. Buchilko, and Yu. S. Teplitskii, On the laws governing vortex fl ows in a cyclone-bed chamber, Izv. Nats. Akad. Nauk Belarusi (in press).Google Scholar
  14. 14.
    A. V. Ermishina and S. A. Isaev (Eds.), Control of Vortex Cells-Containing Flow Past Bodies in Application to Flying Vehicles of Integral Laying-Out (Numerical and Physical Modeling) [in Russian], Izd. Moskovsk. Univ., Moscow (2003).Google Scholar
  15. 15.
    E. A. Pitsukha and Yu. S. Teplitskii, Swirling fl ows in cyclone chambers with nozzles of small fl ow section, J. Eng. Phys. Thermophys., 90, No. 4, 806–816 (2017).CrossRefGoogle Scholar
  16. 16.
    E. A. Pitsukha, Yu. S. Teplitskii, and É. K. Buchilko, Mixing of bottom and tangential air in a cyclone-fl uidized bed chamber, J. Eng. Phys. Thermophys., 91, No. 3, 696–704 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations