Multidimensional poverty measurement with individual preferences

  • Koen DecancqEmail author
  • Marc Fleurbaey
  • François Maniquet


We propose a new approach to multidimensional poverty measurement. To aggregate and weight the different dimensions of poverty, we rely on the preferences of the concerned individuals rather than on an arbitrary weighting scheme selected by the analyst. We provide an axiomatic characterization of an approach in which multidimensional poverty measures add up individual indices of poverty based on their multidimensional outcomes and their preferences. We discuss two families of these individual indices of poverty: quantity metrics and money metrics. Members of the first family evaluate individual poverty by the fraction of the poverty line vector to which the individual is indifferent. The second family considers the ratio between the income to which the individual is indifferent, for some fixed price vector, and the money value of the poverty line vector. We illustrate our approach with Russian survey data between 1995 and 2005. We find that, compared to standard poverty indices, our preference-sensitive indices lead to considerable differences in the identification of the poor.


Multidimensional poverty measurement Preferences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

10888_2019_9407_MOESM1_ESM.pdf (1.1 mb)
(PDF 1.11 MB)


  1. Adler, M.D., Dolan, P., Kavetsos, G.: Would you choose to be happy? Tradeoffs between happiness and the other dimensions of life in a large population survey. J. Econ. Behav. Organ. 139, 60–73 (2017)CrossRefGoogle Scholar
  2. Akay, A., Bargain, O., Jara, X.H.: Fair Welfare Comparisons with Heterogeneous Tastes: Subjective Versus Revealed Preferences IZA Discussion Paper No. 10908 (2017)Google Scholar
  3. Alkire, S., Foster, J.: Counting and multidimensional poverty measurement. J. Public Econ. 95, 476–487 (2011a)Google Scholar
  4. Alkire, S., Foster, J.: Understandings and misunderstandings of multidimensional poverty measurement. J. Econ. Inequal. 9, 289–314 (2011b)Google Scholar
  5. Atkinson, A.B.: Multidimensional deprivation: contrasting social welfare and counting approaches. J. Econ. Inequal. 1, 51–65 (2003)CrossRefGoogle Scholar
  6. Atkinson, A.B., Bourguignon, F.: The comparison of multidimensioned distributions of economic status. Rev. Econ. Stud. 49, 183–201 (1982)CrossRefGoogle Scholar
  7. Benjamin, D.J., Heffetz, O., Kimball, M., Rees-Jones, A.: What do you think would make you happier? What do you think you would choose? Am. Econ. Rev. 102, 2083–2110 (2012)CrossRefGoogle Scholar
  8. Benjamin, D.J., Heffetz, O., Kimball, M., Rees-Jones, A.: Can marginal rates of substitution be inferred from happiness data? Evidence from residency choices. Am. Econ. Rev. 104, 3498–3528 (2014)CrossRefGoogle Scholar
  9. Beegle, K., Himelein, K., Ravallion, M.: Frame-of-reference bias in subjective welfare. J. Econ. Behav. Organ. 81, 556–570 (2012)CrossRefGoogle Scholar
  10. Bosmans, K., Decancq, K., Ooghe, E.: Who is afraid of aggregating money metrics? Theor. Econ. 13(2), 467–484 (2018)CrossRefGoogle Scholar
  11. Bosmans, K., Ooghe, E., Lauwers, L.: Prioritarian poverty comparisons with cardinal and ordinal attributes. Scand. J. Econ. 120(3), 925–942 (2018)CrossRefGoogle Scholar
  12. Bossert, W., Chakravarty, S.R., D’ Ambrosio, C.: Multidimensional poverty and material deprivation with discrete data. Rev. Income Wealth 59, 29–43 (2013)CrossRefGoogle Scholar
  13. Bourguignon, F., Chakravarty, S.R.: The measurement of multi-dimensional poverty. J. Econ. Inequal. 1, 25–49 (2003)CrossRefGoogle Scholar
  14. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B 26, 211–252 (1964)Google Scholar
  15. Clark, A.E., Oswald, A.J.: A simple statistical method for measuring how life events affect happiness. Int. J. Epidemiol. 31, 1139–1144 (2002)CrossRefGoogle Scholar
  16. Deaton, A.: The distance function in consumer behaviour with applications to index numbers and optimal taxation. Rev. Econ. Stud. 46, 391–405 (1979)CrossRefGoogle Scholar
  17. Deaton, A., Muellbauer, J.: Economics and Consumer Behavior. Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  18. Decancq, K., Fleurbaey, M., Schokkaert, E.: Happiness, equivalent incomes, and respect for individual preferences. Economica 82, 1082–1106 (2015)CrossRefGoogle Scholar
  19. Decancq, K., Fleurbaey, M., Schokkaert, E.: Well-being inequality and preference heterogeneity. Economica 84, 210–238 (2017)CrossRefGoogle Scholar
  20. Decancq, K., Neumann, D.: Does the choice of well-being measure matter empirically? In: Adler, M. , Fleurbaey, M. (eds.) The Oxford Handbook of Well-Being and Public Policy. Oxford University Press, London (2016)Google Scholar
  21. Decancq, K., Nys, A.: Nonparametric well-being comparisons. CORE Discussion Paper 2018/21 (2018)Google Scholar
  22. Decancq, K., Schokkaert, E.: Beyond GDP: using equivalent incomes to measure well-being in Europe. Soc. Indic. Res. 126, 21–55 (2016)CrossRefGoogle Scholar
  23. Dolan, P., Fujiwara, D.: Happiness-based policy analysis. In: Adler, M., Fleurbaey, M. (eds.) The Oxford Handbook of Well-Being and Public Policy. Oxford University Press, London (2016)Google Scholar
  24. Duclos, J.-Y., Sahn, D.E., Younger, S.D.: Robust multidimensional poverty comparisons. Econ. J. 116, 943–968 (2006)CrossRefGoogle Scholar
  25. Ferrer-i-Carbonell, A., Frijters, P.: How important is methodology for the estimates of the determinants of happiness? Econ. J. 114, 641–659 (2004)CrossRefGoogle Scholar
  26. Fleurbaey, M.: Two criteria for social decisions. J. Econ. Theory 134, 421–447 (2007)CrossRefGoogle Scholar
  27. Fleurbaey, M., Luchini, S., Muller, C., Schokkaert, E.: Equivalent income and fair evaluation of health care. Health Econ. 22, 711–729 (2013)CrossRefGoogle Scholar
  28. Fleurbaey, M., Maniquet, F.: Fair social orderings. Econ. Theory 34, 25–45 (2008)CrossRefGoogle Scholar
  29. Fleurbaey, M., Maniquet, F.: A Theory of Fairness and Social Welfare. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  30. Fleurbaey, M., Maniquet, F.: Fairness and well-being measurement. Math. Soc. Sci. 90, 119–126 (2017)CrossRefGoogle Scholar
  31. Fleurbaey, M., Maniquet, F.: Inequality averse well-being measurement. Int. J. Econ. Theory 14, 35–50 (2018a)Google Scholar
  32. Fleurbaey, M., Maniquet, F.: Fairness and well-being measurement with non-classical goods. Econ. Theory, forthcoming (2018b)Google Scholar
  33. Fleurbaey, M., Tadenuma, K.: Universal social orderings. Rev. Econ. Stud. 81, 1071–1101 (2014)CrossRefGoogle Scholar
  34. Fleurbaey, M., Trannoy, A.: The impossibility of a Paretian egalitarian. Soc. Choice Welf. 21, 243–263 (2003)CrossRefGoogle Scholar
  35. Foster, J., Shorrocks, A.F.: Subgroup consistent poverty indices. Econometrica 59, 687–709 (1991)CrossRefGoogle Scholar
  36. Frijters, P., Geishecker, I., Haisken-DeNew, J.P., Shields, M.: Can the large swings in Russian life satisfaction be explained by ups and downs in real incomes? Scand. J. Econ. 108, 433–458 (2006)CrossRefGoogle Scholar
  37. Gevers, L., et al.: Walrasian social choice: some simple axiomatic approaches. In: Heller, W. (ed.) Social Choice and Public Decision Making. Essays in Honor of K.J. Arrow. Cambridge University Press, Cambridge (1986)Google Scholar
  38. Graham, C., Eggers, A., Sukhtankar, S.: Does happiness pay? An exploration based on panel data from Russia. J. Econ. Behav. Organ. 55, 319–342 (2004)Google Scholar
  39. Jenkins, S.P., Lambert, P.J.: Three is of poverty curves, with an analysis of UK poverty trends. Oxf. Econ. Pap. 49, 317–327 (1997)CrossRefGoogle Scholar
  40. Jones, A.M., Schurer, S.: How does heterogeneity shape the socioeconomic gradient in health satisfaction? J. Appl. Econ. 26, 549–579 (2011)CrossRefGoogle Scholar
  41. Layard, R., Mayraz, G., Nickell, S.: The marginal utility of income. J. Public Econ. 92, 1846–1857 (2008)CrossRefGoogle Scholar
  42. Maasoumi, E., Lugo, M.A.: The information basis of multivariate poverty assessments. In: Kakwani, N., Silber, J. (eds.) Quantitative Approaches to Multidimensional Poverty Measurement. Palgrave-Macmillan, London (2008)Google Scholar
  43. Maasoumi, E., Racine, J.S.: A solution to aggregation and an application to multidimensional well-being frontiers. J. Econ. 191(2), 374–383 (2016)CrossRefGoogle Scholar
  44. Narayan, D., Patel, R., Schafft, K., Rademacher, A., Koch-Schulte, S.: Voices of the Poor: Can Anyone Hear Us? New York N.Y.: Published for the World Bank. Oxford University Press, London (2000)CrossRefGoogle Scholar
  45. Pazner, E., Schmeidler, D.: Egalitarian equivalent allocations: a new concept of economic equity. Q. J. Econ. 92, 671–687 (1978)CrossRefGoogle Scholar
  46. Ravallion, M.: On multidimensional indices of poverty. J. Econ. Inequal. 9, 235–248 (2011)CrossRefGoogle Scholar
  47. Samuelson, P.A.: Reaffirming the existence of reasonable Bergson-Samuelson social welfare functions. Economica 44, 81–88 (1977)CrossRefGoogle Scholar
  48. Samuelson, P.A., Swamy, S.: Invariant economic index numbers and canonical duality: survey and synthesis. Am. Econ. Rev. 64, 566–593 (1974)Google Scholar
  49. Sen, A.K.: Poverty: an ordinal approach to measurement. Econometrica 44, 219–231 (1976)CrossRefGoogle Scholar
  50. Sprumont, Y., Zhou, L.: Pazner–Schmeidler rules in large societies. J. Math. Econ. 31, 321–339 (1999)CrossRefGoogle Scholar
  51. Tsui, K.Y.: Multidimensional poverty indices. Soc. Choice Welf. 19, 69–93 (2002)CrossRefGoogle Scholar
  52. van Doorslaer, E., Jones, A.M.: Inequalities in self-reported health: validation of a new approach to measurement. J. Health Econ. 22, 61–87 (2003)CrossRefGoogle Scholar
  53. Zheng, B.: Poverty orderings. J. Econ. Surv. 14, 427–466 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Koen Decancq
    • 1
    • 2
    • 3
    • 4
    Email author
  • Marc Fleurbaey
    • 5
  • François Maniquet
    • 3
  1. 1.CSBUniversity of AntwerpAntwerpenBelgium
  2. 2.CPNSSLondon School of EconomicsLondonUK
  3. 3.COREUniversité Catholique de LouvainOttignies-Louvain-la-NeuveBelgium
  4. 4.CESKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Princeton UniversityPrincetonUSA

Personalised recommendations