Journal of Chemical Ecology

, Volume 45, Issue 10, pp 858–868 | Cite as

Electrophysiological and Behavioral Responses of Adult Vine Weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae), to Host Plant Odors

  • Joe M. RobertsEmail author
  • Jhaman Kundun
  • Charlotte Rowley
  • David R. Hall
  • Paul Douglas
  • Tom W. Pope


Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important pest species in many soft-fruit and ornamental crops. Economic losses arise from damage to the roots, caused by larvae, and to the leaves, caused by adults. As adults are nocturnal and larvae feed below ground, infestations can be missed initially, with controls applied too late. In the absence of a vine weevil sex or aggregation pheromone, the development of an effective semiochemical lure for better management of this pest is likely to focus on host-plant volatiles. Here, we investigate the electrophysiological and behavioral responses of adult vine weevils to volatile organic compounds (VOCs) originating from their preferred host plant Euonymus fortunei, and synthetic VOCs associated with this host when presented individually or as blends. Consistent electroantennographic responses were observed to a range of generalist VOCs. Behavioral responses of weevils to VOCs, when presented individually, were influenced by concentration. Vine weevil adults showed directional movement toward a mixture of seven plant volatiles, methyl salicylate, 1-octen-3-ol, (E)-2-hexenol, (Z)-3-hexenol, 1-hexanol, (E)-2-pentenol, and linalool, even though no, or negative, responses were recorded to each of these compounds presented individually. Similarly, vine weevils showed directional movement toward a 1:1 ratio mixture of (Z)-2-pentenol and methyl eugenol. Results presented here point to the importance of blends of generalist compounds and their concentrations in the optimization of a lure.


Vine weevil Euonymus fortunei Monitoring Electroantennography Air entrainment Olfactometry 



This work was funded by AHDB Horticulture [Project numbers SF/HNS 127 and HNS 195]. We thank Tom Shepherd, Robbie McLaren, Scott N. Johnson, and Alison Karley from the James Hutton Institute (Scotland) for kindly providing a list of candidate chemical compounds to test in this study.

Supplementary material

10886_2019_1108_MOESM1_ESM.docx (363 kb)
ESM 1 (DOCX 362 kb)


  1. Anderson P, Hansson BS, Lofqvist J (1995) Plant-odour-specific receptor neurons on the antennae of female and male Spodoptera-littoralis. Physiol Entomol 20:189–198CrossRefGoogle Scholar
  2. Ansari MA, Shah FA, Butt TM (2008) Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol Exp Appl 129:340–347CrossRefGoogle Scholar
  3. Blight MM, Wadhams LJ (1987) Male-produced aggregation pheromone in pea and bean weevil, Sitona lineatus (L.). J Chem Ecol 13:733–739CrossRefGoogle Scholar
  4. Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1995) Antennal perception of oilseed rape, Brassica napus (Brassicacea), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). J Chem Ecol 21:1649–1664CrossRefGoogle Scholar
  5. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry 72:1605–1611CrossRefGoogle Scholar
  6. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274CrossRefGoogle Scholar
  7. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175CrossRefGoogle Scholar
  8. El-Sayed AM (2019) The Pherobase.
  9. Faustini D, Giese W, Phillips J, Burkholder W (1982) Aggregation pheromone of the male granary weevil, Sitophilus granaries (L.). J Chem Ecol 8:679–687CrossRefGoogle Scholar
  10. Georgis R, Koppenhöfer AM, Lacey LA, Bélair G, Duncan LW, Grewal PS, Samish M, Tan L, Torr P, van Tol RWHM (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123CrossRefGoogle Scholar
  11. Gordon SC, Woodford JAT, Grassi A, Zini M, Tuovinen T, Lindqvist I, McNicol JW (2003) Monitoring and importance of wingless weevils (Otiorhynchus spp.) in European red raspberry production. IOBC/WPRS Bull 26:55–60Google Scholar
  12. Gunawardena NE, Kern F, Janssen E, Meegoda C, Schäfer D, Vostrowsky O, Bestmann HJ (1998) Host attractants for red weevil, Rhynchophorus ferrugineus: identification, electrophysiological activity, and laboratory bioassay. J Chem Ecol 24:425–437CrossRefGoogle Scholar
  13. Hansson BS, Larsson MC, Leal WS (1999) Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol Entomol 24:121–126CrossRefGoogle Scholar
  14. Jayaraman S, Ndiege IO, Oehlschlager AC, Gonzalez LM, Alpizar D, Falles M, Budenberg WJ, Ahuya P (1997) Synthesis, analysis, and field activity of sordidin, a male-produced aggregation pheromone of the banana weevil, Cosmopolites sordidus. J Chem Ecol 23:1145–1161CrossRefGoogle Scholar
  15. Kakizaki M (2001) Aggregation behavior of black vine weevil female adults (Otiorhynchus sulcatus (Fabricius)) (Coleoptera: Curculionidae) occurring in Japan. Akita; Japan, Society of Plant Protection of North Japan 52:201–203Google Scholar
  16. Karley A, Shepherd T, Hall D, McLaren R, Johnson S (2012) Characterising vine weevil aggregation pheromone for use in traps at soft fruit and nursery sites. Agriculture and Horticulture Development Board (AHDB).
  17. Kennedy JS (1977) Behaviourally discriminating assays of attractants and repellents. In: JJ MK, Shorey HH (eds) Chemical control of behaviour: theory and application. Wiley Interscience, New York, pp 215–229Google Scholar
  18. Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270CrossRefGoogle Scholar
  19. Larsson MC, Leal WS, Hansson BS (2001) Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J Insect Physiol 47:1065–1076CrossRefGoogle Scholar
  20. Li SY, Fitzpatrick SM, Henderson DE (1995) Grooved board traps for monitoring the black vine weevil (Coleoptera: Curculionidae) in raspberry fields. J Ent Soc British Columbia 92:97–100Google Scholar
  21. Lundmark M (2010) Otiorhynchus sulcatus, an autopolyploid general-purpose genotype species. Hereditas 147:278–282CrossRefGoogle Scholar
  22. Masaki M, Ohto K (1995) Effects of temperature on development of the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Res Bull Plant Prot Service Japan 31:37–45Google Scholar
  23. Masaki M, Ohmura K, Ichinohe F (1984) Host range studies of the black vine weevil Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae). Appl Entomol Zool 19:95–106CrossRefGoogle Scholar
  24. Moorhouse E, Charnley A, Gillespie A (1992) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121:431–454CrossRefGoogle Scholar
  25. Nakamuta K, van Tol RWHM, Visser JH (2005) An olfactometer for analyzing olfactory responses of death-feigning insects. Appl Entomol Zool 40:173–175CrossRefGoogle Scholar
  26. Phillips PA (1989) Simple monitoring of black vine weevil in vineyards. Calif Agric 43:12–13Google Scholar
  27. Pickett JA, Bartlett E, Buxton JH, Wadhams LJ, Woodcock CM (1996) Chemical ecology of adult vine weevil. Second International Workshop on Vine Weevil, (Otiorhynchus sulcatus Fabr.) (Coleoptera: Curculionidae), Braunschweig, Germany, May 21–23, 1996. 316: 41–45Google Scholar
  28. Pope TW, Hough G, Arbona C, Roberts H, Bennison J, Buxton J, Prince G, Chandler D (2018) Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi. J Invertebrate Path 154:79–84CrossRefGoogle Scholar
  29. R Core Team (2019) R: a language and environment for statistical computing. URL:
  30. Rochat D, Malosse C, Lettere M, Ducrot P, Zagatti P, Renou M, Descoins C (1991) Male-produced aggregation pheromone of the American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera, Curculionidae): collection, identification, electrophysiogical activity, and laboratory bioassay. J Chem Ecol 17:2127–2141CrossRefGoogle Scholar
  31. Shah FA, Ansari MA, Prasad M, Butt TM (2006) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol Control 40:246–252CrossRefGoogle Scholar
  32. Shieh B, Lizuka Y, Matsubara Y (1981) Monoterpenoid and sesquiterpenoid constituents of the essential oil of Hinoki (Chamaecyparis obtusa (Sieb. Et Zucc. ) Endl.). Agric biol. Chem (Japan) 45:1497–1499Google Scholar
  33. Smith FF (1932) Biology and control of the black vine weevil. Technical Bulletin of the United States Department of Agriculture Washington, 325: 45ppGoogle Scholar
  34. Solomon MG, Jay CN, Innocenzi PJ, Fitzgerald D, Crook D, Crook AM, Easterbrook MA, Cross JV (2001) Review: natural enemies and biocontrol of pests of strawberry in northern and Central Europe. Biocontrol Sci Tech 11:165–216CrossRefGoogle Scholar
  35. Son Y, Lewis EE (2005) Modelling temperature-dependent development and survival of Otiorhynchus sulcatus (Coleoptera: Curculionidae). Agric For Entomol 7:201–209CrossRefGoogle Scholar
  36. Stewart-Jones A, Poppy GM (2006) Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J Chem Ecol 32:845–864CrossRefGoogle Scholar
  37. Szendrei Z, Rodriguez-Saona C (2009) A meta-analysis of insect pest behavioural manipulation with plant volatiles. Entomol Exp Applic 134:201–210CrossRefGoogle Scholar
  38. Tumlinson JH, Hardee DD, Gueldner RC, Thompson AC, Hedin PA, Minyard JP (1969) Sex pheromones produced by male boll weevil: isolation, identification, and synthesis. Science 166:1010–1012CrossRefGoogle Scholar
  39. van Tol RWHM, Visser JH (2002) Olfactory antennal responses of the vine weevil Otiorhynchus sulcatus to plant volatiles. Entomol Exp Applic 102:49–64CrossRefGoogle Scholar
  40. van Tol RWHM, Visser JH, Sabelis M (2002) Olfactory responses of the vine weevil, Otiorhynchus sulcatus, to tree odours. Physiol Entomol 27:213–222CrossRefGoogle Scholar
  41. van Tol RWHM, van Dijk N, Sabelis MW (2004a) Host plant preference and performance of the vine weevil Otiorhynchus sulcatus. Agric For Entomol 6:267–278CrossRefGoogle Scholar
  42. van Tol RWHM, Visser JH, Sabelis MW (2004b) Behavioural responses of the vine weevil, Otiorhynchus sulcatus, to semiochemicals from conspecifics, Otiorhynchus salicicola, and host plants. Entomol Exp Applic 110:145–150CrossRefGoogle Scholar
  43. van Tol RWHM, Bruck DJ, Griepink FC, De Kogel WJ (2012) Field attraction of the vine weevil Otiorhynchus sulcatus to kairomones. J Econ Entomol 105:169–175CrossRefGoogle Scholar
  44. War AR, Sharma HC, Paulraj MG, War NY, Ignacimuthu S (2011) Herbivore-induced plant volatiles. Plant Signal Behav 6:1973–1978CrossRefGoogle Scholar
  45. Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457CrossRefGoogle Scholar
  46. Willmott DM, Hart AJ, Long SJ, Edmondson RN, Richardson PN (2002) Use of a cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology 4:925–932CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Integrated Pest ManagementHarper Adams UniversityNewportUK
  2. 2.Centre for Applied Entomology and Parasitology, School of Life SciencesKeele UniversityKeeleUK
  3. 3.Natural Resources InstituteUniversity of GreenwichKentUK

Personalised recommendations