Advertisement

Molecular Screening of Behaviorally Active Compounds with CmedOBP14 from the Rice Leaf Folder Cnaphalocrocis medinalis

  • Shuang-Feng Sun
  • Fang-Fang Zeng
  • Shan-Cheng Yi
  • Man-Qun WangEmail author
Article

Abstract

Odorant binding proteins (OBPs) play a key role in chemoreception in insects. In an earlier study, we identified CmedOBP14 from the rice leaf folder, Cnaphalocrocis medinalis, with potential physiological functions in olfaction. Here, we performed a competitive binding assay under different pH conditions as well as knockdown via RNA interference to determine the specific role of CmedOBP14 in C. medinalis. CmedOBP14 displayed broad binding affinities to many host-related compounds, with higher affinities at pH 7.4 compared with pH 5.0. After treatment with CmedOBP14-dsRNA, the transcript level of OBP14 was significantly decreased at 72 h compared with controls, and the electroantennogram response evoked by nerolidol, L-limonene and beta-ionone was reduced. Furthermore, behavioral assays revealed consistent patterns among these compounds, especially for nerolidol, with adults could no longer able to differentiate 0.1% nerolidol from controls. RNAi experiments suggest that at least in part, CmedOBP14 mediates the ability to smell nerolidol and beta-ionone.

Keywords

Odorant binding proteins RNA interference EAG response Reverse chemical ecology Plant volatiles Behaviorally active compounds 

Notes

Acknowledgments

This study was supported and funded by the National Key Research and Development Program of China (2017YFD0200400) and the Special Technical Innovation of Hubei Province (2017ABA146).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430CrossRefGoogle Scholar
  2. Aldrich JR, Kochansky JP, Abrams CB (1984) Attractant for a beneficial insect and its parasitoids: pheromone of the predatory spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Environ Entomol 13:1031–1036CrossRefGoogle Scholar
  3. Blackmer JL, Rodriguez-Saona C, Byers JA, Shope KL, Smith JP (2004) Behavioral response of Lygus hesperus to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer. J Chem Ecol 30:1547–1564CrossRefGoogle Scholar
  4. Brito NF, Moreira MF, Melo ACA (2016) A look inside odorant-binding proteins in insect chemoreception. J Insect Physiol 95:51–65CrossRefGoogle Scholar
  5. Campanacci V, Lartigue A, Hällberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. PNAS 100:5069–5074CrossRefGoogle Scholar
  6. Cha DH, Loeb GM, Linn CE, Hesler SP, Landolt PJ (2018) A multiple-choice bioassay approach for rapid screening of key attractant volatiles. Environ Entomol 47:946–950CrossRefGoogle Scholar
  7. Chang SS, Li GZ (1980) Studies on the migration of rice leaf roller Cnaphalocrocis medinalis Guenee. Acta Entomol Sin 2:130–140Google Scholar
  8. Choo YM, Xu P, Hwang JK, Zeng FF, Tan K, Bhagavathy G, Chauhan KR, Leal WS (2018) Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. PNAS 115:714–719CrossRefGoogle Scholar
  9. Damberger F, Nikonova L, Horst R, Peng G, Leal W, Wüthrich K (2000) NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci 9:1038–1041CrossRefGoogle Scholar
  10. Damberger F, Ishida Y, Leal W, Wuethrich K (2007) Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol 373:811–819CrossRefGoogle Scholar
  11. Dickens JC (1984) Olfaction in the boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae): electroantennogram studies. J Chem Ecol 10:1759–1785CrossRefGoogle Scholar
  12. Dickens JC, Boldt PE (1985) Electroantennogram responses of Trirhabda bacharides (weber) (Coleoptera: Chrysomelidae) to plant volatiles. J Chem Ecol 11:767–779CrossRefGoogle Scholar
  13. Duan SG, Li DZ, Wang MQ (2019) Chemosensory proteins used as target for screening behaviourally active compounds in the rice pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Insect Mol Biol 28:123–135CrossRefGoogle Scholar
  14. Fuentes MT, Lenardis A, Fuente EBDL (2018) Insect assemblies related to volatile signals emitted by different soybean – weeds – herbivory combinations. Agric Ecosyst Environ 255:20–26CrossRefGoogle Scholar
  15. Giacomuzzi V, Mattheis JP, Basoalto E, Angeli S, Knight AL (2017) Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). Pest Manag Sci 73:1837–1845CrossRefGoogle Scholar
  16. Guerin PM, Visser JH (2010) Electroantennogram responses of the carrot fly, Psila rosae, to volatile plant components. Physiol Entomol 5:111–119CrossRefGoogle Scholar
  17. Ishida Y, Tsuchiya W, Fujii T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-pick type C2 protein mediating chemical communication in the worker ant. PNAS 111:3847–3852CrossRefGoogle Scholar
  18. Klein U (1987) Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem 17:1193–1204CrossRefGoogle Scholar
  19. Kröber T, Koussis K, Bourquin M, Tsitoura P, Konstantopoulou M, Awolola TS, Dani FR, Qiao H, Pelosi P, Latrou K, Guerin PM (2018) Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae. Insect Biochem Mol 96:36–50CrossRefGoogle Scholar
  20. Leal WS, Nikonova L, Peng G (1999) Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464:85–90CrossRefGoogle Scholar
  21. Leal WS, Barbosa RMR, Xu W, Ishida Y, Syed Z, Latte N, Chen AM, Morgan TI, Cornel AJ, Furtado A (2008) Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3(8):e3045CrossRefGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25: 402-408Google Scholar
  23. Li ZQ, Zhang S, Luo JY, Cui JJ, Ma Y, Dong SL (2013) Two minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J Insect Physiol 59:263–272CrossRefGoogle Scholar
  24. Li QL, Yi SC, Li DZ, Nie XP, Li SQ, Wang MQ, Zhou AM (2018a) Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism. Insect Mol Biol 27:305–318CrossRefGoogle Scholar
  25. Li Z, Wan G, Wang L, Parajulee MN, Zhao Z, Chen F (2018b) Effects of seed mixture sowing with resistant and susceptible rice on population dynamics of target planthoppers and non-target stemborers and leaffolders. Pest Manag Sci 74:1664–1676CrossRefGoogle Scholar
  26. Light DM, Jang EB (2011) Electroantennogram responses of the oriental fruit fly, Dacus dorsalis, to a spectrum of alcohol and aldehyde plant volatiles. Entomol Exp Appl 45:55–64CrossRefGoogle Scholar
  27. Loughrin JH, Manukian A, Heath RR, Tumlinson JH (1995) Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J Chem Ecol 21:1217–1227CrossRefGoogle Scholar
  28. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118CrossRefGoogle Scholar
  29. Molnar BP, Boddum T, Hill SR, Hansson BS, Hillbur Y, Birgersson GA (2018) Ecological and phylogenetic relationships shape the peripheral olfactory systems of highly specialized gall midges (cecidomiiydae). Front Physiol 9:323CrossRefGoogle Scholar
  30. Ney Ribeiro L, Renata K, Wei X, Yuko I, Jorge I, Leal WS, Glaucius O (2009) Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive "lid". PLoS One 4:e8006CrossRefGoogle Scholar
  31. Obata T, Kim M, Koh H, Hukami H (1981) Planthopper attractants in the rice plant [Oryza sativa]. Jpn J Appl Entomol Zool 25:47–51Google Scholar
  32. Pelosi P, Calvello M, Ban L (2005) Diversity of odorant-binding proteins and chemosensory proteins in insects. Chem Senses 30(Suppl 1):i291–i292CrossRefGoogle Scholar
  33. Pesenti ME, Spinelli SV (2009) Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol 390:981–990CrossRefGoogle Scholar
  34. Qiao HL, Deng PY, Li DD, Chen M, Jiao ZJ, Liu ZC, Zhang YZ, Kan YC (2013) Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori. J Insect Physiol 59:667–675CrossRefGoogle Scholar
  35. Qin JD, Wang CZ (2001) The relation of interaction between insects and plants to evolution. Acta Entomol Sin:360–365Google Scholar
  36. Ramachandran R, Khan ZR, Caballero P, Juliano BO (1990) Olfactory sensitivity of two sympatric species of rice leaf folders (Lepidoptera: Pyralidae) to plant volatiles. J Chem Ecol 16:26–47CrossRefGoogle Scholar
  37. Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Paré P (2002) Lygus hesperus Feeding and salivary gland extracts induce volatile emissions in plants. J Chem Ecol 28: 1733-1747Google Scholar
  38. Sánchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203CrossRefGoogle Scholar
  39. Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein–bombykol complex. Chem Biol 7:143–151CrossRefGoogle Scholar
  40. Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13:89–91CrossRefGoogle Scholar
  41. Silk PJ, Mayo PD, LeClair G, Brophy M, Pawlowski S, MacKay C, Hillier NK, Hughes C, Sweeney JD (2017) Semiochemical attractants for the beech leaf-mining weevil, Orchestes fagi. Entomol Exp Appl 164:102–112CrossRefGoogle Scholar
  42. Steinbrecht RA (1998) Odorant-binding proteins: expression and function. Ann N Y Acad Sci 855:323–332CrossRefGoogle Scholar
  43. Sun X, Wang MQ, Zhang G (2011) Ultrastructural observations on antennal sensilla of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Microsc Res Tech 74:113–121CrossRefGoogle Scholar
  44. Sun X, Liu Z, Zhang A, Dong HB, Zeng FF, Pan XY, Wang Y, Wang MQ (2014) Electrophysiological responses of the rice leaffolder, Cnaphalocrocis medinalis, to rice plant volatiles. J Insect Sci 14:70CrossRefGoogle Scholar
  45. Sun X, Zeng FF, Yan MJ, Zhang A, Lu ZX, Wang MQ (2016) Interactions of two odorant-binding proteins influence insect chemoreception. Insect Mol Biol 25:712–723CrossRefGoogle Scholar
  46. Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264CrossRefGoogle Scholar
  47. Verkerk RHJ, Wright DJ (2010) Interactions between the diamondback moth, Plutella xylostella L. and glasshouse and outdoor-grown cabbage cultivars. Ann Appl Biol 125:477–488CrossRefGoogle Scholar
  48. Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490CrossRefGoogle Scholar
  49. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefGoogle Scholar
  50. Wang Q (2012) Study on effect of Daoteng on Chilo suppressatis, Cnaphalocrocis medinalis and rice stem borer. Sichuan Agricultural UniversityGoogle Scholar
  51. Wei X, Leal WS (2008) Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem Biophys Res Commun 372:559–564CrossRefGoogle Scholar
  52. Williams L, Rodriguez-Saona C, Pare PW, Crafts-Brandner SJ (2005) The piercing-sucking herbivores Lygus hesperus and Nezara viridula induce volatile emissions in plants. Arch Insect Biochem Physiol 58:84–96CrossRefGoogle Scholar
  53. Yan F, Bruton R, Park A, Zhang A (2018) Identification of attractive blend for spotted wing drosophila,Drosophila suzukii, from apple juice. J Pest Sci 91:1251–1267CrossRefGoogle Scholar
  54. Zeng FF, Sun X, Dong HB, Wang MQ (2013) Analysis of a cDNA library from the antenna of Cnaphalocrocis medinalis and the expression pattern of olfactory genes. Biochem Biophys Res Commun 433:463–469CrossRefGoogle Scholar
  55. Zeng FF, Zhao ZF, Yan MJ, Zhou W, Zhang Z, Zhang A, Lu ZX, Wang MQ (2015) Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), PLOS One: e0144267Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.School of Food Science and TechnologyHenan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations