Advertisement

Identification and Characterization of the Pheromones in the Minute Pirate Bug Orius sauteri (Heteroptera: Anthocoridae)

  • Takuya UeharaEmail author
  • Taro Maeda
  • Masami Shimoda
  • Nao Fujiwara-Tsujii
  • Hiroe Yasui
Article

Abstract

The flower bug Orius sauteri is a generalist predator that occurs throughout Japan, and is a promising indigenous natural enemy for micro-pests such as thrips, aphids, and spider mites. We aimed to manipulate the attraction, dispersal, and settlement behavior of Orius bugs using natural chemical substances emitted by the bugs themselves. To identify potential candidates, we screened components in the whole-body extract of O. sauteri based on antennal response and then determined their chemical structure. A gas chromatograph electroantennographic detector (GC/EAD) indicated that the antennae of males responded to two components in the extract of females. GC/mass spectrometry (MS) showed that these two components were octenal and octadienal. Derivatization or GC-FT-IR analysis identified these components as (E)-2-octenal and (E)-2,7-octadienal. To assess the effect of these components on O. sauteri behavior, we conducted two assays. A field bioassay demonstrated that a blend of the two components functioned as a sex pheromone, and a dispersal assay showed that (E)-2-octenal generated a dose-dependent dispersal response. Our study will provide baseline information for enhancing the retention of O. sauteri on important commercial crops to prey on pest species.

Keywords

Biological control Natural enemy Generalist predator Pesticide Semiochemicals 

Notes

Acknowledgements

We thank Dr. Shigeru Matsuyama at the University of Tsukuba for his kind advice on the synthesis of octadienal and Dr. Nobuyuki Akai and Mr. Masazumi Hayashi at Tokyo University of Agriculture and Technology for supporting the GC/FT-IR analysis. We also thank Mr. Kouhei Terada and Mr. Tomofumi Shibata for supporting the field bioassay. This project was supported by a research grant from the Japan Prize Foundation.

Supplementary material

10886_2019_1104_MOESM1_ESM.pptx (80 kb)
Supplementary Fig. 1 Comparison of the attractiveness of 2,7-octadienals synthesized by different pathways. Number of catches were analyzed using the Mann–Whitney U-test (N = 8, P = 0.8282). (PPTX 80 kb)
10886_2019_1104_MOESM2_ESM.pptx (73 kb)
Supplementary Fig. 2 Schematic diagram of dispersal assay. (PPTX 73 kb)
10886_2019_1104_MOESM3_ESM.pptx (77 kb)
Supplementary Tables (PPTX 77 kb)

References

  1. Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238CrossRefGoogle Scholar
  2. Aldrich JR, Oliver JE, Taghizadeh T, Ferreira JTB, Liewehr D (1999) Pheromones and colonization: reassessment of the milkweed bug migration model (Heteroptera: Lygaeidae: Lygaeinae). Chemoecol 9:63–71CrossRefGoogle Scholar
  3. Aldrich JR, Oliver JE, Shifflet T, Smith CL, Dively GP (2007) Semiochemical investigations of the insidious flower bug, Orius insidiosus (Say). J Chem Ecol 33:1477–1493CrossRefGoogle Scholar
  4. Blum MS (1961) The presence of 2-hexenal in the scent gland of the pentatomid Brochymena quadripustulata. Ann Entomol Soc Am 54:410–412CrossRefGoogle Scholar
  5. Blum MS, Crain RD, Chidester JB (1961) Trans-2-hexenal in the scent gland of the hemipteran Acanthocephala femorata. Nature 189:245–246CrossRefGoogle Scholar
  6. Borges M, Aldrich JR (1992) Instar-specific defensive secretions of stink bugs (Heteroptera: Pentatomidae). Experientia 48:893–896CrossRefGoogle Scholar
  7. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822CrossRefGoogle Scholar
  8. Carvalho LM, Bueno VHP, Castane C (2011) Olfactory response towards its prey Frankliniella occidentalis of wild and laboratory-reared Orius insidiosus and Orius laevigatus. J Appl Entomol 135:177–183CrossRefGoogle Scholar
  9. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefGoogle Scholar
  10. Crawley MJ (2005) Statistics, an introduction using R. John Wiley, New YorkCrossRefGoogle Scholar
  11. Furihata S, Tabuchi K, Okudera S, Takahashi A, Hinomoto N, Shimoda M, Yamaguchi T (2019) An efficient method for monitoring predatory minute pirate bug Orius spp. (Hemiptera: Anthocoridae) populations using blue-colored sticky traps. Environ Entomol 48:426–433CrossRefGoogle Scholar
  12. Gunawardena NE, Bandumathie MK (1993) Defensive secretion of rice bug, Leptocorisa oratorius Fabricius, (Hemiptera: Coreidae): a unique chemical combination and its toxic, repellent, and alarm properties. J Chem Ecol 19:851–861CrossRefGoogle Scholar
  13. Hock V, Chouinard G, Lucas É, Cormier D, Leskey T, Zhang A (2017) Olfactometer responses of plum curculio Conotrachelus nenuphar (Herbst)(Coleoptera: Curculionidae) to host plant volatiles, synthetic grandisoic acid, and live conspecifics. J Insect Behav 30:475–494.  https://doi.org/10.1007/s10905-017-9634-0 CrossRefGoogle Scholar
  14. Hughes MA, Martini X, Kuhns E, Colee J, Mafra-Neto A, Stelinski LL, Smith JA (2017) Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. J Appl Entomol 141:653–664CrossRefGoogle Scholar
  15. Imura T, Kamikawa S (2012) Possibility of Tagetes patula L. for banker plants of Orius spp. Ann Rept Kansai Pl Prot 54:163–165CrossRefGoogle Scholar
  16. Ishiwatari T (1974) Studies on the scent stink bug (Hemiptera: Pentatomidae) I. alarm pheromone activity. Appl Entomol Zool 9:153–158CrossRefGoogle Scholar
  17. Ishiwatari T (1976) Studies on the scent of stink bugs (Hemiptera: Pentatomidae): II. Aggregation pheromone activity. Appl Entomol Zool 11:38–44CrossRefGoogle Scholar
  18. James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495CrossRefGoogle Scholar
  19. James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628CrossRefGoogle Scholar
  20. Kugel M (1977) The time course of the electroretinogram of compound eyes in insects and its dependence on special recording conditions. J Exp Biol 71:1–6Google Scholar
  21. Leal WS, Kuwahara Y, Matsuyama S, Suzuki T, Ozawa T (1992) GC-FTIR potential for structure elucidation. J Braz Chem Soc 3:25–29CrossRefGoogle Scholar
  22. Levinson HZ, Ilan ARB (1971) Assembling and alerting scents produced by the bedbug Cimex lectularius L. Experientia 27:102–103CrossRefGoogle Scholar
  23. Li S, Tan X, Desneux N, Benelli G, Zhao J, Li X, Zhang F, Gao X, Wang S (2015) Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures? Sci Rep 5.  https://doi.org/10.1038/srep12729
  24. Maeda T, Fujiwara-Tsujii N, Yasui H, Matsuyama S (2016) Female sex pheromone in trails of the minute pirate bug, Orius minutus (L). J Chem Ecol 42:433–443CrossRefGoogle Scholar
  25. Mochizuki M, Yano E (2007) Olfactory response of the anthocorid predatory bug Orius sauteri to thrips-infested eggplants. Entomol Exp Appl 123:57–62CrossRefGoogle Scholar
  26. Nagai K (1990) Suppressive effect of Orius sp. (Hemiptera: Anthocoridae) on the population density of Thrips palmi Karny (Thysanoptera: Thripidae) in eggplant in an open field. Jpn J Appl Ent Zool 34:109–114CrossRefGoogle Scholar
  27. Nakashima Y, Hirose Y (1999) Trail sex pheromone as a cue for searching mates in an insect predator Orius sauteri. Ecol Entomol 24:115–117CrossRefGoogle Scholar
  28. Njihia TN, Torto B, Murungi LK, Irungu J, Mwenda DM, Babin R (2017) Identification of kairomones of second instar nymphs of the variegated coffee bug Antestiopsis thunbergii (Heteroptera: Pentatomidae). Chemoecology 27:239–248CrossRefGoogle Scholar
  29. Noge K (2015) Studies on chemical ecology of the heteropteran scent gland components. J Pestic Sci 40:143–145CrossRefGoogle Scholar
  30. Noge K, Prudic KL, Becerra JX (2012) Defensive roles of (E)-2-alkenals and related compounds in Heteroptera. J Chem Ecol 38:1050–1056CrossRefGoogle Scholar
  31. Ogino T, Uehara T, Muraji M, Yamaguchi T, Ichihashi T, Suzuki T, Kainoh Y, Shimoda M (2016) Violet LED light enhances the recruitment of a thrip predator in open fields. Sci Rep 6.  https://doi.org/10.1038/srep32302
  32. Ohno K, Takemoto H (1997) Species composition and seasonal occurrence of Orius spp. (Heteroptera: Anthocoridae), predacious natural enemies of Thrips palmi (Thysanoptera: Thripidae), in eggplant fields and surrounding habitats. Appl Entomol Zool 32:27–35CrossRefGoogle Scholar
  33. Ohta I, Takeda M (2014) Adult survival of Orius strigicollis (Poppius) on different flowering plants and its development and fecundity on buckwheat flowers. Ann Rept Kansai Pl Prot 56:1–5CrossRefGoogle Scholar
  34. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  35. Rahman MM, Lim UT (2017) Evaluation of aggregation and alarm pheromones of Riptortus pedestris (Hemiptera: Alydidae) as a push–pull strategy in soybean fields. Appl Entomol Zool 52:469–479CrossRefGoogle Scholar
  36. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:e0146021CrossRefGoogle Scholar
  37. Stepanycheva EA, Petrova MO, Chermenskaya TD, Shamshev IV, Pazyuk IM (2014) The behavioral response of the predatory bug Orius laevigatus Fieber (Heteroptera, Anthocoridae) to synthetic volatiles. Entomol Rev 94:1053–1058CrossRefGoogle Scholar
  38. Takai M (1998) Control of insect pests on eggplant using indigenous natural enemies in an open field. I. Seasonal trend of the major insect pests of eggplant and their natural enemies. Bull Kochi Agric Res Cent 7:21–27Google Scholar
  39. Ulrich KR, Feldlaufer MF, Kramer M, Leger RJS (2015) Inhibition of the entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal. BioControl 60:517–526CrossRefGoogle Scholar
  40. Ulrich KR, Kramer M, Feldlaufer MF (2016) Ability of bed bug (Hemiptera: Cimicidae) defensive secretions (E)-2-hexenal and (E)-2-octenal to attract adults of the common bed bug Cimex lectularius. Physiol Entomol 41:103–110CrossRefGoogle Scholar
  41. Venables WN, Ripley BD (2002) Modern applied statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0Google Scholar
  42. Xu X, Enkegaard A (2009) Prey preference of Orius sauteri between western flower thrips and spider mites. Entomol Exp Appl 132:93–98CrossRefGoogle Scholar
  43. Yasuda T, Oku K, Higuchi H, Shigehisa S, Okutani-Akamatsu Y, Watanabe T, Takahashi A, Sugeno W, Yamashita M, Fukumoto T, Mochizuki F (2009) Optimization of blends of synthetic sex pheromone components for attraction of the sorghum plant bug Stenotus rubrovittatus (Matsumura)(Heteroptera: Miridae). Appl Entomol Zool 44:611–619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Insect SciencesInstitute of Agrobiological Sciences, NAROIbarakiJapan
  2. 2.Division of Applied Entomology and ZoologyCentral Region Agricultural Research Center, NAROIbarakiJapan

Personalised recommendations