Advertisement

Journal of Chemical Ecology

, Volume 45, Issue 5–6, pp 464–473 | Cite as

Subtle Chemical Variations with Strong Ecological Significance: Stereoselective Responses of Male Orchid Bees to Stereoisomers of Carvone Epoxide

  • Katharina Brandt
  • Stefan Dötterl
  • Roman Fuchs
  • Daniela Maria do Amaral Ferraz Navarro
  • Isabel Cristina Sobreira Machado
  • Daniel Dobler
  • Oliver Reiser
  • Manfred Ayasse
  • Paulo Milet-PinheiroEmail author
Article

Abstract

Different enantiomers of chiral compounds within floral perfumes usually trigger distinct responses in insects; however, this has frequently been neglected in studies investigating semiochemicals in plant-pollinator interactions. Approximately 1000 neotropical plants produce floral perfumes as the only reward for pollinators, i.e. male euglossine bees. The chiral compound carvone epoxide is a key component of the scent bouquet of many perfume-rewarding plants that are pollinated by males of Eulaema. Here, we tested the biological activity of the four carvone epoxide stereoisomers to four Eulaema species occurring in the Atlantic Rainforest of NE-Brazil. We determined the stereochemistry of carvone epoxide in the floral scent of several Catasetum species, tested whether the antennae of bees respond differentially to these stereoisomers and investigated if there is a behavioural preference for any of the stereoisomers. We found that 1) Catasetum species emit only the (−)-trans-stereoisomer of carvone epoxide, 2) for E. atleticana and E. niveofasciata antennal responses to the (−)-trans-carvone epoxide were significantly stronger than those to (−)-cis-carvone epoxide, 3) the strength and pattern of antennal responses to all 4 stereoisomers (separately tested) did not differ among Eulaema species, and 4) there were significant differences in attractiveness of the four stereoisomers to the bees species with the (−)-trans-stereoisomer being particularly attractive. We assume (−)-trans-carvone epoxide to be the dominant isomer in perfume-rewarding plants pollinated by Eulaema. The universal occurrence of carvone epoxide in Catasetum species pollinated by Eulaema, suggests that this compound has evolved in perfume-rewarding as a specific attractant for Eulaema bees as pollinators.

Keywords

Catasetum Chirality Electrophysiology Eulaema Euglossine bees Perfume-rewarding plants Pollinators 

Notes

Acknowledgements

We thank Tiago César and Juan Fernández Gómez for providing Catasetum plants for sampling of floral perfumes and Hans Saegesser Santos for performing preliminary EAG analyses. This work was supported by the Deutsche Forschungsgemeinschaft (AY 12/12-1), the Deutscher Akademischer Austauschdienst (DAAD grant number 57210526), Coordenação de Aperfeiçoamento de Nível Superior (CAPES, Brazil - Finance Code 001 - grant to P.M.P.), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (grant number FACEPE/BCT - 0288-2.05/17 to P.M.P.), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant number CNPq/PDJ -152077/2016-2 to P.M.P).

Supplementary material

10886_2019_1072_MOESM1_ESM.pdf (652 kb)
ESM 1 (PDF 652 kb)

References

  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to software and statistical methods, PRIMER-E, PlymouthGoogle Scholar
  2. Armbruster WS (1989) Three new species of Dalechampia (Euphorbiaceae) from Venezuelan Guayana. Brittonia 41:44–52CrossRefGoogle Scholar
  3. Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc Lond B Biol Sci 270:517–522CrossRefGoogle Scholar
  4. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Usinglme4. J Stat Softw 67:1–48Google Scholar
  5. Brandt K, Dötterl S, Francke W, Ayasse M, Milet-Pinheiro P (2017) Flower visitors of Campanula: are Oligoleges more sensitive to host-specific floral scents than Polyleges? J Chem Ecol 43:4–12CrossRefGoogle Scholar
  6. Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH (1969) Biologically active compounds in orchid fragrances. Science 164:1243–1249CrossRefGoogle Scholar
  7. Dopman EB, Robbins PS, Seaman A (2010) Components of reproductive isolation between north-american pheromone strains of the european corn borer. Evolution 64:881–902.  https://doi.org/10.1111/j.1558-5646.2009.00883.x CrossRefGoogle Scholar
  8. Dötterl S, Wolfe LM, Jürgens A (2005) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213CrossRefGoogle Scholar
  9. Dötterl S, Burkhardt D, Weißbecker B, Jürgens A, Schütz S, Mosandl A (2006) Linalool and lilac aldehyde/alcohol in flower scents: Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J Chromatogr 1113:231–238CrossRefGoogle Scholar
  10. Eltz T, Whitten WM, Roubik DW, Linsenmair KE (1999) Fragrance Collection, Storage, and Accumulation by Individual Male Orchid Bees. J Chem Ecol 25:157–176.  https://doi.org/10.1023/a:1020897302355 CrossRefGoogle Scholar
  11. Erbilgin N, Raffa KF (2000) Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. J Chem Ecol 26:2527–2548Google Scholar
  12. Garver L, Van Eikeren P, Byrd JE (1976) A facile synthesis of (+)-pinol from (−)-carvone. J Organomet Chem 41:2773–2774CrossRefGoogle Scholar
  13. Gemeno C, Leal WS, Mori K, Schal C (2003) Behavioral and electrophysiological responses of the brownbanded cockroach, Supella longipalpa, to stereoisomers of its sex pheromone, supellapyrone. J Chem Ecol 29:1797–1811CrossRefGoogle Scholar
  14. Gerlach G, Schill R (1991) Composition of orchid scents attracting Euglossine bees. Bot Acta 104:379–384.  https://doi.org/10.1111/j.1438-8677.1991.tb00245.x CrossRefGoogle Scholar
  15. Govaerts R, Bernet P, Kratochvil K, Gerlach G, Carr G, Alrich P, Pridgeon AM, Pfahl J, Campacci MA, Holland Baptista D, Tigges H, Shaw J, Cribb P, George A, Kreuz K, Wood J. (2018) World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew Published on the Internet; http://wcsp.science.kew.org/. Accessed 17 Aug 2018
  16. Hills HG, Williams NH, Dodson CH (1972) Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica 4:61–76.  https://doi.org/10.2307/2989728 CrossRefGoogle Scholar
  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefGoogle Scholar
  18. Jhumur US, Dötterl S, Jürgens A (2007) Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interact 1:245–254.  https://doi.org/10.1007/s11829-007-9022-3 CrossRefGoogle Scholar
  19. Kaiser R (1993) The scent of orchids: olfactory and chemical investigations. Elsevier Science Publishers, AmsterdamCrossRefGoogle Scholar
  20. Kaiser R (2011) Scent of the vanishing flora, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  21. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  22. König WA, Hochmuth DH (2004) Enantioselective gas chromatography in flavor and fragrance analysis: strategies for the identification of known and unknown plant volatiles. J Chromatogr Sci 42:423–439CrossRefGoogle Scholar
  23. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw 82:1–26Google Scholar
  24. Lenth R (2018) Estimated marginal means, aka least-squares means. R package version 1.1. The R projectGoogle Scholar
  25. Lindquist N, Battiste MA, Whitten WM, Williams NH, Strekowski L (1985) Trans-carvone oxide, a monoterpene epoxide from the fragrance of Catasetum. Phytochemistry 24:863–865CrossRefGoogle Scholar
  26. Linn C, O'Connor M, Roelofs W (2003) Silent genes and rare males: a fresh look at pheromone blend response specificity in the European corn borer moth, Ostrinia nubilalis. J Insect Sci 3(15):1–6CrossRefGoogle Scholar
  27. Martel C, Gerlach G, Ayasse M, Milet-Pinheiro P (2019) Pollination ecology of the Neotropical gesneriad Gloxinia perennis: chemical composition and temporal fluctuation of floral perfume. Plant Biol.  https://doi.org/10.1111/plb.12974
  28. Milet-Pinheiro P, Gerlach G (2017) Biology of the Neotropical orchid genus Catasetum : a historical review on floral scent chemistry and pollinators. Perspect Plant Ecol Evol Syst 27:23–34.  https://doi.org/10.1016/j.ppees.2017.05.004 CrossRefGoogle Scholar
  29. Milet-Pinheiro P, Ayasse M, Dötterl S (2015a) Visual and olfactory floral cues of Campanula (Campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. PLoS One 10:e0128577CrossRefGoogle Scholar
  30. Milet-Pinheiro P, Navarro D, Dotterl S, Carvalho AT, Pinto CE, Ayasse M, Schlindwein C (2015b) Pollination biology in the dioecious orchid Catasetum uncatum: how does floral scent influence the behaviour of pollinators? Phytochemistry 116:149–161.  https://doi.org/10.1016/j.phytochem.2015.02.027 CrossRefGoogle Scholar
  31. Moss G (1996) Basic terminology of stereochemistry (IUPAC recommendations 1996). Pure Appl Chem 68:2193–2222CrossRefGoogle Scholar
  32. Nagai T (1981) Electroantennogram response gradient on the antenna of the European corn borer, Ostrinia nubilalis. J Insect Physiol 27:889–894CrossRefGoogle Scholar
  33. R Core Team (2018) R: A Language and Environment for Statistical Computing. The R Project, Vienna https://www.R-project.org Google Scholar
  34. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569CrossRefGoogle Scholar
  35. Ramirez S, Dressler RL, Ospina M (2002) Abejas euglosinas (Hymenoptera: Apidae) de la région neotropical: listado de especies con notas sobre su biología. Biota Colomb 3:7–118Google Scholar
  36. Roelofs WL (1984) Electroantennogram assays: rapid and convenient screening procedures for pheromones. In: Techniques in pheromone research. Springer, Berlin, pp 131–159CrossRefGoogle Scholar
  37. Schneider MA, Dötterl S, Seifert K (2013) Diastereoselective synthesis of a lilac aldehyde isomer and its electrophysiological detection by a moth. Chem Biodivers 10:1252–1259CrossRefGoogle Scholar
  38. Schorkopf DLP, Mitko L, Eltz T (2011) Enantioselective preference and high antennal sensitivity for (−)-Ipsdienol in scent-collecting male orchid bees, Euglossa cyanura. J Chem Ecol 37:953–960CrossRefGoogle Scholar
  39. Schwerdtfeger M, Gerlach G, Kaiser R (2002) Anthecology in the neotropical genus Anthurium (Araceae): a preliminary report. Selbyana 23:258–267Google Scholar
  40. Strausfeld CZ, Kaissling K-E (1986) Localized adaptation processes in olfactory sensilla of Saturniid moths. Chem Senses 11:499–512.  https://doi.org/10.1093/chemse/11.4.499 CrossRefGoogle Scholar
  41. Takita S, Yokoshima S, Fukuyama T (2011) A practical synthesis of (−)-kainic acid. Org Lett 13:2068–2070CrossRefGoogle Scholar
  42. Teale SA, Hager BJ, Webster FX (1994) Pheromone-based assortative mating in a bark beetle. Anim Behav 48:569–578CrossRefGoogle Scholar
  43. Teichert H, Dötterl S, Zimma B, Ayasse M, Gottsberger G (2009) Perfume-collecting male euglossine bees as pollinators of a basal angiosperm: the case of Unonopsis stipitata (Annonaceae). Plant Biol 11:29–37CrossRefGoogle Scholar
  44. Vogel S (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen undGloxinia. Oesterr Bot Z 113:302–361CrossRefGoogle Scholar
  45. Wang Q, Huang Q, Chen B, Lu J, Wang H, She X, Pan X (2006) Total synthesis of (+)-Machaeriol D with a key Regio-and Stereoselective SN2′ reaction. Angew Chem 118:3733–3735CrossRefGoogle Scholar
  46. Weber MG, Mitko L, Eltz T, Ramírez SR (2016) Macroevolution of perfume signalling in orchid bees. Ecol Lett 19:1314–1323CrossRefGoogle Scholar
  47. Whitten WM, Williams NH, Armbruster WS, Battiste MA, Strekowski L, Lindquist N (1986) Carvone oxide: an example of convergent evolution in euglossine pollinated plants. Syst Bot 11:222–228CrossRefGoogle Scholar
  48. Whitten WM, Hills HG, Williams NH (1988) Occurrence of ipsdienol in floral fragrances. Phytochemistry 27:2759–2760CrossRefGoogle Scholar
  49. Williams NH, Whitten WM (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164:355–395CrossRefGoogle Scholar
  50. Yasuda A, Yamamoto H, Nozaki H (1979) A Stereoselective 1, 3-transposition reaction of Allylic alcohols. Bull Chem Soc Jpn 52:1757–1759CrossRefGoogle Scholar
  51. Zimmermann Y, Ramírez SR, Eltz T (2009) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90:2994–3008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Katharina Brandt
    • 1
  • Stefan Dötterl
    • 2
  • Roman Fuchs
    • 2
  • Daniela Maria do Amaral Ferraz Navarro
    • 3
  • Isabel Cristina Sobreira Machado
    • 4
  • Daniel Dobler
    • 5
  • Oliver Reiser
    • 5
  • Manfred Ayasse
    • 1
  • Paulo Milet-Pinheiro
    • 4
    Email author
  1. 1.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  2. 2.Department of BiosciencesUniversity of SalzburgSalzburgAustria
  3. 3.Departamento de Química FundamentalUniversidade Federal de PernambucoRecifeBrazil
  4. 4.Departamento de BotânicaUniversidade Federal de PernambucoRecifeBrazil
  5. 5.Institute of Organic ChemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations