Advertisement

Journal of Chemical Ecology

, Volume 45, Issue 1, pp 46–49 | Cite as

The Pattern of Straight Chain Hydrocarbons Released by Yucca Flowers (Asparagaceae)

  • Armin Tröger
  • Glenn P. Svensson
  • David M. Althoff
  • Kari A. Segraves
  • Robert A. Raguso
  • Wittko Francke
Rapid Communication
  • 88 Downloads

Abstract

The hydrocarbon pattern in the floral scent of Yucca species was found to comprise a group of unbranched, mid-chain alkanes, alkenes, and an alkadiene. In Y. reverchonii, highly dominant (Z)-8-heptadecene is accompanied by (6Z,9Z)-6,9-heptadecadiene and heptadecane as minor components and by traces of other saturated and unsaturated hydrocarbons with similar chain length. Some of these volatiles proved to be perceived by the antennae of Tegeticula cassandra (pollinating seed-eater of Yucca) and Prodoxus decipiens (herbivore on Yucca). The possible biosynthesis of the compounds is discussed.

Keywords

Yucca Scent Hydrocarbons (Z)-8-Heptadecene Biosynthesis 

Notes

Acknowledgements

The research was partially supported by NSF award DEB 1556568 to DMA and KAS.

References

  1. Engelmann G (1872) The flower of yucca and its fertilization. Bull Torrey Bot Club 3(33)Google Scholar
  2. Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond positions in linear alkenes. J Chromatogr A 219:379–384CrossRefGoogle Scholar
  3. Goller S, Szöcs G, Francke W, Schulz S (2007) Biosynthesis of (3Z,6Z,9Z)-3,6,9-octadecatriene: the main component of the pheromone blend of Erannis bajaria. J Chem Ecol 33:1505–1509CrossRefGoogle Scholar
  4. Jurenka R (2004) Insect pheromone biosynthesis. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Top Curr Chem, vol 239. Springer, Berlin Heidelberg New York, pp 97–132Google Scholar
  5. Kováts E (1965) Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1:229–247Google Scholar
  6. Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55CrossRefGoogle Scholar
  7. Reitz AB, Nortey SO, Jordan AD Jr, Mutter MS, Maryanoff BE (1986) Dramatic concentration dependence of stereochemistry in the Wittig reaction. Examination of the lithium salt effect. J Org Chem 51:3302–3308CrossRefGoogle Scholar
  8. Svensson GP, Hickman MO Jr, Bartram S, Boland W, Pellmyr O, Raguso RA (2005) Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am J Bot 92:1624–1631CrossRefGoogle Scholar
  9. Svensson GP, Pellmyr O, Raguso RA (2011) Pollinator attraction to volatiles from virgin and pollinated host flowers in a yucca/moth obligate mutualism. Oikos 120:1577–1583CrossRefGoogle Scholar
  10. van der Klis F, van den Hoorn MH, Blaauw R, van Haveren J, van Es DS (2011) Oxidative decarboxylation of unsaturated fatty acids. Eur J Lipid Sci Technol 113:562–571CrossRefGoogle Scholar
  11. Vincenti M, Guglielmetti G, Cassani G, Tonini C (1987) Determination of double-bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 59:694–699CrossRefGoogle Scholar
  12. Wang C-P, Kameoka H (1980) Constituents of the essential oil of the flower of Yucca recurvifolia Salisb. Nippon Nôgeikagaku Kaishi (J Agric Chem Soc Japan) 54:331–336 (in Japanese, English Abstract)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Armin Tröger
    • 1
  • Glenn P. Svensson
    • 2
  • David M. Althoff
    • 3
  • Kari A. Segraves
    • 3
  • Robert A. Raguso
    • 4
  • Wittko Francke
    • 1
  1. 1.Institute of Organic ChemistryUniversität HamburgHamburgGermany
  2. 2.Department of BiologyLund UniversityLundSweden
  3. 3.Department of BiologySyracuse UniversitySyracuseUSA
  4. 4.Department of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations