Artificial Compressibility Method for the Navier–Stokes–Maxwell–Stefan System

  • Michele Dolce
  • Donatella DonatelliEmail author


The Navier–Stokes–Maxwell–Stefan system describes the dynamics of an incompressible gaseous mixture in isothermal condition. In this paper we set up an artificial compressibility type approximation. In particular we focus on the existence of solution for the approximated system and the convergence to the incompressible case. The existence of the approximating system is proved by means of semidiscretization in time and by estimating the fractional time derivative.


Stefan–Maxwell Navier Stokes equation Artificial compressibility method Fixed point methods 



  1. 1.
    Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys 106, 993–1018 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boudin, L., Grec, B., Salvarani, F.: A mathematical and numerical analysis of the Maxwell–Stefan diffusion equations. Discrete Contin. Dyn. Syst. B 5, 1427–1440 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, X., Jüngel, A.: Analysis of an incompressible Navier–Stokes–Maxwell–Stefan system. Commun. Math. Phys. 340, 471–497 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donatelli, D., Marcati, P.: A dispersive approach to the artificial compressibility approximations of the Navier–Stokes equations in 3-D. J. Hyperb. Differ. Equ. 3, 575–588 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Donatelli, D.: On the artificial compressibility method for the Navier–Stokes–Fourier system. Q. Appl. Math. 68(3), 469–485 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Donatelli, D., Marcati, P.: Leray weak solutions of the incompressible Navier–Stokes system on exterior domains via the artificial compressibility method. Indiana Univ. Math. J. 59, 1831–1852 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Donatelli, D.: The artificial compressibility approximation for MHD equations in unbounded domain. J. Hyperb. Differ. Equ. 10(1), 181–198 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in \(L^P(0, T;B)\). Nonlinear Anal. 75, 3072–3077 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)CrossRefGoogle Scholar
  13. 13.
    Jüngel, A., Stelzer, I.: Existence analysis of Maxwell–Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45, 2421–2440 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oskolkov, A.P.: A certain quasilinear parabolic system with small parameter that approximates a system of Navier–Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 21, 79–103 (1971)MathSciNetGoogle Scholar
  15. 15.
    Simon, J.: Compact Sets in the Space \(L^p(0,T;B)\). Annali di Matematica pura ed applicata (IV) CXLVI, 65–96 (1987)zbMATHGoogle Scholar
  16. 16.
    Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32, 135–153 (1969)CrossRefGoogle Scholar
  17. 17.
    Témam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 32, 377–385 (1969)CrossRefGoogle Scholar
  18. 18.
    Témam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam (1979)zbMATHGoogle Scholar
  19. 19.
    Wesseling, J.A., Krishna, R.: Mass Transfer in Multicomponent Mixtures. Delft University Press, Delft (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GSSI - Gran Sasso Science InstituteL’AquilaItaly
  2. 2.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations