Advertisement

Regularity and Stability Sets for Families of Sequences of Matrices

  • Luis BarreiraEmail author
  • Claudia Valls
Article
  • 3 Downloads

Abstract

We consider the notions of Lyapunov regularity and of Lyapunov stability and asymptotic stability for a dynamics defined by a continuous 1-parameter family of sequences of matrices. In particular, we identify all classes of sets that can be the regularity set, the stability set and the asymptotic stability set of any such family. Moreover, we construct explicitly families of sequences of matrices whose regularity set, stability set or asymptotic stability set is a given set in those classes.

Keywords

Lyapunov regularity Sequences of matrices Stability 

Mathematics Subject Classification

Primary 37D99 

Notes

References

  1. 1.
    Adrianova, L.: Introduction to Linear Systems of Differential Equations, Translations of Mathematical Monographs, vol. 146. American Mathematical Society, Providence (1995)CrossRefGoogle Scholar
  2. 2.
    Barabanov, E.: On the improperness sets of families of linear differential systems. Differ. Eq. 45, 1087–1104 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barabanov, E.: Structure of stability and asymptotic stability sets of families of linear differential systems with parameter multiplying the derivative: I. Differ. Eq. 46, 613–627 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barabanov, E.: Structure of stability and asymptotic stability sets of families of linear differential systems with parameter multiplying the derivative: II. Differ. Eq. 46, 798–807 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barabanov, E., Kasabutskii, A.: Structure of nonasymptotic stability sets of families of linear differential systems with a multiplying parameter. Differ. Eq. 47, 153–165 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barreira, L.: Lyapunov Exponents. Birkhäuser, Basel (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    Barreira, L., Pesin, Y.: Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, vol. 23. American Mathematical Society, Providence (2002)Google Scholar
  8. 8.
    Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Barreira, L., Valls, C.: Lyapunov regularity via singular values. Trans. Am. Math. Soc. 369, 8409–8436 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bhatia, N., Szegö, G.: Stability Theory of Dynamical Systems, Grundlehren der mathematischen Wissenschaften, vol. 161. Springer, Berlin (1970)CrossRefGoogle Scholar
  11. 11.
    Bonatti, C., Díaz, L., Viana, M.: Dynamics beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, vol. 102. Springer, Berlin (2005)zbMATHGoogle Scholar
  12. 12.
    Czornik, A.: Perturbation Theory for Lyapunov Exponents of Discrete Linear Systems. Wydawnictwa AGH, Kraków (2012)Google Scholar
  13. 13.
    Hahn, W.: Stability of Motion, Grundlehren der mathematischen Wissenschaften, vol. 138. Springer, Berlin (1967)Google Scholar
  14. 14.
    Hausdorff, F.: Set Theory. Chelsea Publishing Co., White River Junction (1962)zbMATHGoogle Scholar
  15. 15.
    Izobov, N.: Lyapunov Exponents and Stability, Stability Oscillations and Optimization of Systems, vol. 6. Cambridge Scientific Publishers, Cambridge (2012)Google Scholar
  16. 16.
    LaSalle, J., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications, Mathematics in Science and Engineering, vol. 4. Academic Press, Cambridge (1961)Google Scholar
  17. 17.
    Lyapunov, A.: The General Problem of the Stability of Motion. Taylor & Francis, Abingdon (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Oseledets, V.: A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–221 (1968)zbMATHGoogle Scholar
  19. 19.
    Pesin, Y.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv. 40, 1261–1305 (1976)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pesin, Y.: Characteristic Ljapunov exponents, and smooth ergodic theory. Rus. Math. Surv. 32, 55–114 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pesin, Y.: Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations