Advertisement

Existence of Waves for a Bistable Reaction–Diffusion System with Delay

  • V. VolpertEmail author
Article
  • 19 Downloads

Abstract

Existence of travelling waves is studied for a delay reaction–diffusion system of equations describing the distribution of viruses and immune cells in the tissue. The proof uses the Leray-Schauder method based on the topological degree for elliptic operators in unbounded domains and on a priori estimates of solutions in weighted spaces.

Keywords

Reaction–diffusion system Delay Travelling wave Existence 

Mathematics subject classification

35K57 

Notes

Acknowledgements

The publication has been prepared with the support of the “RUDN University Program 5-100”, the Russian Science Foundation grant number 18-11-00171, and the French–Russian project PRC2307. The author is grateful to the anonymous reviewer for the profound reading of the paper and for the valuable remarks.

References

  1. 1.
    Alfaro, M., Coville, J., Raoul, G.: Bistable travelling waves for nonlocal reaction diffusion equations. Discret. Contin. Dyn. Syst. 34, 1775–1791 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alfaro, M., Ducrot, A.: Propagating interface in a monostable reaction-diffusion equation with time delay. Differ. Integral Equ. 27(1–2), 81–104 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alfaro, M., Ducrot, A., Giletti, T.: Travelling waves for a non-monotone bistable equation with delay: existence and oscillations. Proc. London Math. Soc. 116(3), 729–759 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bocharov, G., Meyerhans, A., Bessonov, N., Trofimchuk, S., Volpert, V.: Spatiotemporal dynamics of virus infection spreading in tissues. PLoS ONE 11(12), e0168576 (2016).  https://doi.org/10.1371/journal.pone.0168576 CrossRefGoogle Scholar
  5. 5.
    Bocharov, G., Meyerhans, A., Bessonov, N., Trofimchuk, S., Volpert, V.: Modelling the dynamics of virus infection and immune response in space and time. Int. J. Parallel Emergent Distrib. Syst. (2017).  https://doi.org/10.1080/17445760.2017.1363203 zbMATHGoogle Scholar
  6. 6.
    Bonnefon, O., Garnier, J., Hamel, F., Roques, L.: Inside dynamics of delayed traveling waves. Math. Mod. Nat. Phen. 8, 42–59 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ducrot, A., Nadin, G.: Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation. J. Differ. Equ. 256(9), 3115–3140 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gomez, A., Trofimchuk, S.: Global continuation of monotone wavefronts. J. London Math. Soc. 89, 47–68 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gourley, S.A., So, J.W.-H., Wu, J.H.: Non-locality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124, 5119–5153 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ma, S., Wu, J.: Existence, uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation. J. Dynam. Differential Equations 19, 391–436 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Schaaf, K.: Asymptotic behavior and travelling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc. 302, 587–615 (1987)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Smith, H.L., Zhao, X.-Q.: Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM J. Math. Anal. 31, 514–534 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Trofimchuk, S., Volpert, V.: Travelling waves for a bistable reaction-diffusion equation with delay. SIAM J. Math. Anal. 50(1), 1175–1190 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Trofimchuk, S., Volpert, V.: Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities. Nonlinearity (2019). in pressGoogle Scholar
  16. 16.
    Volpert, V.: Existence of viral infection waves in a model of immune response. In pressGoogle Scholar
  17. 17.
    Volpert, A.I., Volpert, V.A.: Applications of the rotation theory of vector fields to the study of wave solutions of parabolic equations. Trans. Moscow Math. Soc. 52, 59–108 (1990)Google Scholar
  18. 18.
    Volpert, A., Volpert, Vit., Volpert, Vl.: Traveling wave solutions of parabolic systems. Translation of mathematical monographs, Vol. 140, Amer. Math. Society, Providence (1994)Google Scholar
  19. 19.
    Volpert, A.I., Volpert, V.A.: The construction of the Leray-Schauder degree for elliptic operators in unbounded domains. Annales de l’IHP. Analyse non lineaire 11(3), 245–273 (1994)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Volpert, V., Volpert, A., Collet, J.F.: Topological degree for elliptic operators in unbounded cylinders. Adv. Differ. Equ. 4(6), 777–812 (1999)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Volpert, A., Volpert, V.: Properness and topological degree for general elliptic operators. Abstract Appl. Anal. 3, 129–181 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, Z.-C., Li, W.-T., Ruan, S.: Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Differ. Equ. 238, 153–200 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Camille Jordan, UMR 5208 CNRSUniversity Lyon 1VilleurbanneFrance
  2. 2.Institut Camille JordanINRIA, Université de Lyon, Université Lyon 1Villeurbanne CedexFrance
  3. 3.Peoples Friendship University of Russia (RUDN University)MoscowRussian Federation
  4. 4.Marchuk Institute of Numerical Mathematics of the RAS ul. Gubkina 8MoscowRussian Federation

Personalised recommendations