Advertisement

Competition in Periodic Media: III—Existence and Stability of Segregated Periodic Coexistence States

  • Léo GirardinEmail author
  • Alessandro Zilio
Article

Abstract

In this paper we consider a system of parabolic reaction–diffusion equations with strong competition and two related scalar reaction–diffusion equations. We show that in certain space periodic media with large periods, there exist periodic, non-constant, non-trivial, stable stationary states. We compare our results with already known results about the existence and nonexistence of such solutions. Finally, we provide ecological interpretations for these results.

Keywords

Competition–diffusion system Periodic media Segregation Stability 

Mathematics Subject Classification

35B10 35B35 35B40 35K57 92D25 

Notes

Acknowledgements

The authors thank Grégoire Nadin for the attention he paid to this work and Cécile Carrère and Henri Berestycki for pointing out the interest of this problem.

References

  1. 1.
    Ambrosetti, A., Arcoya, D.: An introduction to nonlinear functional analysis and elliptic problems. In: Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Boston (2011)Google Scholar
  2. 2.
    Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model I—Species persistence. J. Math. Biol. 51(1), 75–113 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berestycki, H., Hamel, F., Rossi, L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Ann. Mat. Pura Appl. (4) 186(3), 469–507 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying cross section. Calc. Var. Partial Differ. Equ. 55(3), 44 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Crooks, E.C.M., Dancer, E.N., Hilhorst, D.: On long-time dynamics for competition–diffusion systems with inhomogeneous Dirichlet boundary conditions. Topol. Methods Nonlinear Anal. 30(1), 1–36 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dancer, E.N.: On the existence and uniqueness of positive solutions for competing species models with diffusion. Trans. Am. Math. Soc. 326(2), 829–859 (1991)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dancer, E.N., Yi, H.D.: Competing species equations with diffusion, large interactions, and jumping nonlinearities. J. Differ. Equ. 114(2), 434–475 (1994)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dancer, E.N., Hilhorst, D., Mimura, M., Peletier, L.A.: Spatial segregation limit of a competition–diffusion system. Eur. J. Appl. Math. 10(2), 97–115 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ding, W., Hamel, F., Zhao, X.-Q.: Bistable pulsating fronts for reaction–diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66(4), 1189–1265 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37(1), 61–83 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. (JEMS) 17(9), 2243–2288 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001)Google Scholar
  14. 14.
    Girardin, L.: Competition in periodic media: I—existence of pulsating fronts. Discrete Contin. Dyn. Syst. Ser. B 22(4), 1341–1360 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Girardin, L., Nadin, G.: Competition in periodic media: II—segregative limit of pulsating fronts and “Unity is not Strength”-type result. J. Differ. Equ. 265(1), 98–156 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kishimoto, K., Weinberger, H.F.: The spatial homogeneity of stable equilibria of some reaction–diffusion systems on convex domains. J. Differ. Equ. 58(1), 15–21 (1985)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 3(51), 45–78 (1934)zbMATHGoogle Scholar
  18. 18.
    Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Matano, H., Mimura, M.: Pattern formation in competition–diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19(3), 1049–1079 (1983)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 1021–1047 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218(2), 647–697 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Yihong, D., Lin, Z.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42(1), 377–405 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Yihong, D., Lin, Z.: Erratum: spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 45(3), 1995–1996 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7), 1687–1705 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParisFrance
  2. 2.Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Paris DiderotParisFrance

Personalised recommendations