Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 2293–2304 | Cite as

On Strictly Convex Central Configurations of the 2n-Body Problem

  • E. BarrabésEmail author
  • J. M. Cors


We consider planar central configurations of the Newtonian 2n-body problem consisting in two twisted regular n-gons of equal masses. We prove the conjecture that for \(n\ge 5\) all convex central configurations of two twisted regular n-gons are strictly convex.


Central configuration Convex central configuration n-Body problem Twisted central configuration 

Mathematics Subject Classification

70F10 70F15 


  1. 1.
    Barrabés, E., Cors, J.: On central configurations of twisted crowns. arXiv:1612.07135 (2016)
  2. 2.
    Chen, K.C., Hsiao, J.S.: Convex central configurations of the \(n\)-body problem which are not strictly convex. J. Dyn. Differ. Equ. 24, 119–128 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fernandes, A., Garcia, B., Mello, L.: Convex but not strictly convex central configurations. J. Dyn. Differ. Equ. (2017). CrossRefzbMATHGoogle Scholar
  4. 4.
    Roberts, G.: Existence and stability of relative equilibria in the n-body problem. PhD thesis, Boston University (1999)Google Scholar
  5. 5.
    Saari, D.G.: Collisions, rings, and other Newtonian \(N\)-body problems, CBMS Regional Conference Series in Mathematics, vol 104. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2005)Google Scholar
  6. 6.
    Yu, X., Zhang, S.: Twisted angles for central configurations formed by two twisted regular polygons. J. Differ. Equ. 253, 2106–2122 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escola Politècnica SuperiorUniversitat de GironaGironaSpain
  2. 2.Escola Politècnica Superior d’Enginyeria de ManresaUniversitat Politècnica de CatalunyaManresaSpain

Personalised recommendations