Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 2223–2247 | Cite as

Turing Instability and Turing–Hopf Bifurcation in Diffusive Schnakenberg Systems with Gene Expression Time Delay

  • Weihua JiangEmail author
  • Hongbin Wang
  • Xun Cao


In this paper, we study the delayed reaction–diffusion Schnakenberg systems with Neumann boundary conditions. Sufficient and necessary conditions for the occurrence of Turing instability are obtained, and the existence of Turing, Hopf and Turing–Hopf bifurcation for the model are also established. Furthermore, for Turing–Hopf bifurcation, the explicit formula of the truncated normal form up to third order is derived. With the aid of these formulas, we determine the regions on two parameters plane, on which a pair of stable spatially inhomogeneous steady states and a pair of stable spatially inhomogeneous periodic solutions exist, respectively. The theoretical results not only reveals the joint effect of diffusion and delay on the patterns that the model can exhibit, but also explain the phenomenon that time delay may induce a failure of Turing instability, found by Gaffney and Monk (Bull Math Biol 68(1):99–130, 2006).


Diffusive Schnakenberg model with delay Turing instability Turing–Hopf bifurcation Normal form Spatiotemporal patterns 



The work was supported in part by the National Natural Science Foundation of China (Nos. 11871176, 11671110).


  1. 1.
    An, Q., Jiang, W.: Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete Contin. Dyn. Syst. Ser. B (2018). CrossRefzbMATHGoogle Scholar
  2. 2.
    Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J. Theret. Biol. 245, 220–229 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, S., Yu, J.: Stability analysis of a reaction–diffusion equation with spatiotemporal delay and Dirichlet boundary condition. J. Dynam. Differ. Equ. 28(3–4), 857–866 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Faria, T., Magalhaes, L.: Normal forms for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122(2), 201–224 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Faria, T., Magalhaes, L.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122(2), 181–200 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gaffney, E., Monk, N.: Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68(1), 99–130 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin (1983)CrossRefGoogle Scholar
  8. 8.
    Guo, S.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259(4), 1409–1448 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guo, S., Ma, L.: Stability and bifurcation in a delayed reaction–diffusion equation with Dirichlet boundary condition. J. Nonlinear Sci. 26(2), 545–580 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gurdon, J., Bourillot, P.: Morphogen gradient interpretation. Nature 413(6858), 797–803 (2001)CrossRefGoogle Scholar
  11. 11.
    Hadeler, K., Ruan, S.: Interaction of diffusion and delay. Discrete Contin. Dyn. Syst. Ser. B 8(1), 95–105 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jang, J., Ni, W., Tang, M.: Global bifurcation and structure of Turing patterns in the 1-d Lengyel–Epstein model. J. Dynam. Differ. Equ. 16(2), 297–320 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jiang, W., Anm Q., Shi, J.: Formulation of the normal forms of Turing-Hopf bifurcation in reaction–diffusion systems with time delay. arXiv:1802.10286 (2018)
  14. 14.
    Just, W., Bose, M., Bose, S., Engel, H., Schöll, E.: Spatiotemporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E 64(2), 026219 (2001)CrossRefGoogle Scholar
  15. 15.
    Kidachi, H.: On mode interactions in reaction diffusion equation with nearly degenerate bifurcations. Prog. Theor. Phys. 63(4), 1152–1169 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer-Verlag, Berlin (1995)CrossRefGoogle Scholar
  17. 17.
    Lee, S., Gaffaney, E., Baker, R.: The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull. Math. Biol. 73, 2527–2551 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, X., Jiang, W., Shi, J.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling–Tanner predator–prey model. IMA J. Appl. Math. 78(2), 287–306 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, P., Shi, J., Wang, Y., Feng, X.: Bifurcation analysis of reaction–diffusion Schnakenberg model. J. Math. Chem. 51(8), 2001–2019 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maini, P., Painter, K., Chau, H.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93(20), 3601–3610 (1997)CrossRefGoogle Scholar
  21. 21.
    Meixner, M., Dewit, A., Bose, S., Scholl, E.: Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phy. Rev. E 55(6), 6690–6697 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Murray, J.: Mathematical Biology. Springer, New York (2003)CrossRefGoogle Scholar
  23. 23.
    Ni, W., Tang, M.: Turing patterns in the Lengyel–Epstein system for the CIMA reaction. Trans. Am. Math. Soc. 357(10), 3953–3969 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Peng, R., Yi, F., Zhao, X.: Spatiotemporal patterns in a reaction–diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ. 254(6), 2465–2498 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ricard, M., Mischler, S.: Turing instabilities at Hopf bifurcation. J. Nonlinear Sci. 19(5), 467–496 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81(3), 389 (1979)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shi, H., Ruan, S.: Spatial, temporal and spatiotemporal patterns of diffusive predator–prey models with mutual interference. IMA J. Appl. Math. 80(5), 1534–1568 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Song, Y., Jiang, H., Liu, Q., Yuan, Y.: Spatiotemporal dynamics of the diffusive Mussel–Algae model near Turing–Hopf bifurcation. SIAM J, Appl Dyn. Syst. 16(4), 2030–2062 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247(4), 1156–1184 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, J.: Spatiotemporal patterns of a homogeneous diffusive predator–prey system with Holling type III functional response. J. Dyn. Differ. Equ. 29, 1–27 (2016)MathSciNetGoogle Scholar
  32. 32.
    Ward, M., Wei, J.: The existence and stability of asymmetric spike patterns for the Schnakenberg model. Stud. Appl. Math. 109(3), 229–264 (2002)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wittenberg, R., Holmes, P.: The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Physica D 100(1–2), 1–40 (1997)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xu, C., Wei, J.: Hopf bifurcation analaysis in a one-dimensional Schnakenberg reaction–diffusion model. Nonlinear Anal. RWA 13, 1961–1977 (2012)CrossRefGoogle Scholar
  35. 35.
    Yan, X., Li, W.: Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model. Nonlinearity 23(6), 1413 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yi, F., Gaffney, E., Seirin, L.: The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete Contin. Dyn. Syst. Ser. B 22(2), 647–668 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations