Advertisement

Exceptional Sets for Nonuniformly Hyperbolic Diffeomorphisms

  • Sara Campos
  • Katrin GelfertEmail author
Article
  • 38 Downloads

Abstract

For a surface diffeomorphism, a compact invariant locally maximal set W and some subset \(A\subset W\) we study the A-exceptional set, that is, the set of points whose orbits do not accumulate at A. We show that if the Hausdorff dimension of A is smaller than the Hausdorff dimension d of some ergodic hyperbolic measure, then the topological entropy of the exceptional set is at least the entropy of this measure and its Hausdorff dimension is at least d. Particular consequences occur when there is some a priori defined hyperbolic structure on W and, for example, if there exists an SRB measure.

Keywords

Topological entropy Hausdorff dimension Exceptional sets 

Mathematics Subject Classification

37B40 37C45 37D25 37F35 

References

  1. 1.
    Abercrombie, A.G., Nair, R.: An exceptional set in the ergodic theory of Markov maps of the interval. Proc. Lond. Math. Soc. (3) 75, 221–240 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abercrombie, A.G., Nair, R.: An exceptional set in the ergodic theory of rational maps of the Riemann sphere. Ergod. Theory Dy. Syst. 17, 253–267 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Avila, A., Lyubich, M.: Lebesgue measure of Feigenbaum Julia sets. Preprint (arXiv:1504.02986)
  4. 4.
    Barreira, L., Wolf, Ch.: Measures of maximal dimension for hyperbolic diffeomorphisms. Commun. Math. Phys. 239, 93–113 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bishop, Ch.J., Perez, Y.: Fractals in Probability and Analysis. Cambridge Studies in Advanced Mathematics, vol. 162. Cambridge University Press, Cambridge (2016)Google Scholar
  6. 6.
    Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)zbMATHGoogle Scholar
  8. 8.
    Burns, K., Gelfert, K.: Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete Contin. Dyn. Syst. 34, 1841–1872 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Campos, S., Gelfert, K.: Exceptional sets for nonuniformly expanding maps. Nonlinearity 29, 1238–1256 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chung, Y.M.: The largeness of sets of points with non-dense orbit in basic sets on surfaces. Proc. Am. Math. Soc. 124, 1615–1624 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dani, S.G.: On orbits of endomorphisms of tori and the Schmidt game. Ergod. Theory Dy. Syst. 8, 523–529 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dani, S.G.: On badly approximable numbers, Schmidt games and bounded orbits of flows. In: Number theory and dynamical systems (York, 1987), pp. 69–86, London Mathematical Society Lecture Note Series, vol. 134, Cambridge University Press, Cambridge (1989)Google Scholar
  13. 13.
    Dolgopyat, D.: Bounded orbits of Anosov flows. Duke Math. J. 87, 87–114 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Falconer, K.: The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  15. 15.
    Falconer, K.: Fractal Geometry. Wiley, Hoboken (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Franks, J.: Invariant sets of hyperbolic toral automorphisms. Am. J. Math. 99, 1089–95 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gelfert, K.: Horseshoes for diffeormorphisms preserving hyperbolic measures. Math. Z. 282, 685–701 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hancock, S.G.: Construction of invariant sets for Anosov diffeomorphisms. J. Lond. Math. Soc. (2) 18, 339–348 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hirsch, M.: On invariantsets of hyperbolic sets. In: Haefliger, A., Narasimhan, R. (eds.) Essays on Topology and Related Topics. Mem. dédiés à George de Rham. Springer, Berlin (1970)Google Scholar
  20. 20.
    Jarnik, V.: Diophantischen approximationen und hausdorffsches maß. Mat. Sb. 36, 371–382 (1929)zbMATHGoogle Scholar
  21. 21.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kleinbock, D.Y., Margulis, G.A.: Bounded orbits of non-quasiunipotent flows on homogeneous spaces. Am. Math. Soc. Transl. 171, 141–172 (1996)zbMATHGoogle Scholar
  23. 23.
    Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms: Part I: Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 2nd Ser 122, 509–539 (1985)CrossRefzbMATHGoogle Scholar
  24. 24.
    McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergod. Theory Dyn. Syst. 3, 251–260 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mañé, R.: Orbits of paths under hyperbolic toral automorphisms. Proc. Am. Math. Soc. 73, 121–125 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Manning, A.: A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergod. Theory Dyn. Syst. 1, 451–459 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Palis, J., Viana, M.: On the continuity of Hausdorff dimension and limit capacity for horseshoes. In: Bamón, R., Labarca, R., Palis, J. (eds.) Dynamical Systems (Valparaiso, 1986). Lecture Notes in Mathematics, 1331, pp. 150–160. Springer, Berlin (1988)CrossRefGoogle Scholar
  28. 28.
    Pesin, Ya.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)CrossRefzbMATHGoogle Scholar
  29. 29.
    Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1997)CrossRefzbMATHGoogle Scholar
  30. 30.
    Pesin, Ya., Weiss, H.: The multifractal analysis of gibbs measures: motivation, mathematical foundations and examples. Chaos 7, 89–106 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Przytycki, F.: Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors. Stud. Math. 68, 199–213 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Przytycki, F., Urbański, M.: On the Hausdorff dimension of some fractal sets. Stud. Math. 93, 155–186 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. London Mathematical Society Lecture Note Series, vol. 371. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rams, M.: Measures of maximal dimension. Real Anal Exchange 31(1), 55–62 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schmidt, W.M.: On badly approximable numbers and certain games. Trans. Am. Math. Soc. 123, 178–199 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Takens, F.: Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. In: Bamón, R., Labarca, R. (eds.) Dynamical Systems (Valparaiso, 1986). Lecture Notes in Mathematics, 1331, pp. 196–212. Springer, Berlin (1988)CrossRefGoogle Scholar
  37. 37.
    Tseng, J.: Schmidt games and Markov partitions. Nonlinearity 22, 525–543 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Urbański, M.: On Hausdorff dimension of invariant sets for expanding maps of a circle. Ergod. Theory Dyn. Syst. 6, 295–309 (1986)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Urbański, M.: The Hausdorff dimension of the set of points with nondense orbit under a hyperbolic dynamical system. Nonlinearity 4, 385–97 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Urbański, M.: Measures and dimensions in conformal dynamics. Bull. Am. Math. Soc. 40, 281–321 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1981)zbMATHGoogle Scholar
  42. 42.
    Wolf, Ch.: Generalized physical and SRB measures for hyperbolic diffeomorphisms. J. Stat. Phys. 122, 1111–1138 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wu, W.: Schmidt games and non-dense forward orbits of certain partially hyperbolic systems. Ergod. Theory Dyn. Syst. 36, 1656–1678 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Young, L.S.: Dimension, entropy and Lyapunov exponents. Ergod. Theory Dyn. Syst. 2, 109–124 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Young, L.S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Federal University of Juiz de ForaCampus Universitário - Bairro MartelosJuiz de ForaBrazil
  2. 2.Institute of MathematicsFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations