Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 2165–2175 | Cite as

Global Existence and Stability of Nearly Aligned Flocks

  • Roman ShvydkoyEmail author


We study regularity of a hydrodynamic singular model of collective behavior introduced in Shvydkoy and Tadmor (Trans Math Appl 1(1):tnx001, 2017). In this note we address the question of global well-posedness in multi-dimensional settings. It is shown that any initial data \((u,\rho )\) with small velocity variations \(|u(x) - u(y)| < \varepsilon \) relative to its higher order norms, gives rise to a unique global regular solution which aligns and flocks exponentially fast. Moreover, we prove that the limiting flocks are stable.


Flocking Alignment Cucker–Smale Fractional Laplacian 

Mathematics Subject Classification

92D25 35Q35 76N10 



Research was supported in part by NSF grant DMS 1515705, and the College of LAS at UIC. The author thanks Eitan Tadmor for stimulating discussions


  1. 1.
    Carrillo, J.A., Choi, Y.-P., Tadmor, E., Tan, C.: Critical thresholds in 1D Euler equations with non-local forces. Math. Models Methods Appl. Sci. 26(1), 185–206 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Constantin, P., Zelati, M.C., Vicol, V.: Uniformly attracting limit sets for the critically dissipative SQG equation. Nonlinearity 29(2), 298–318 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22(5), 1289–1321 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Do, T., Kiselev, A., Ryzhik, L., Tan, C.: Global regularity for the fractional Euler alignment system. Arch. Ration. Mech. Anal. 228(1), 1–37 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ha, S.-Y., Kang, M.-J., Kwon, B.: A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid. Math. Models Methods Appl. Sci. 24(11), 2311–2359 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    He, S., Tadmor, E.: Global regularity of two-dimensional flocking hydrodynamics. C. R. Math. Acad. Sci. Paris 355(7), 795–805 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing III: fractional diffusion of order \(0<\alpha <1\). Phys. D (accepted)Google Scholar
  10. 10.
    Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing. Trans. Math. Appl. 1(1), tnx001 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Shvydkoy, R., Tadmor, E.: Eulerian dynamics with a commutator forcing II: flocking. Discrete Contin. Dyn. Syst. 37(11), 5503–5520 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)zbMATHGoogle Scholar
  13. 13.
    Vicsek, T., Zefeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Statistics, and Computer Science, M/C 249University of IllinoisChicagoUSA

Personalised recommendations