Advertisement

Measure Neutral Functional Differential Equations as Generalized ODEs

  • M. Federson
  • M. Frasson
  • J. G. Mesquita
  • P. H. TacuriEmail author
Article
  • 150 Downloads

Abstract

In this paper, we introduce a class of measure neutral functional differential equations of type
$$\begin{aligned} \mathrm {D}[N(x_t,t)]=f(x_t,t)\mathrm {D}g(t) \end{aligned}$$
through the relation with a certain class of generalized ordinary differential equations introduced in Federson and Schwabik (Differ Integral Equ 19(11):1201–1234, 2006) (we write generalized ODEs), using similar ideas to those of Federson et al. (J Differ Equ 252(6):3816–3847, 2012). By means of the correspondence with generalized ODEs, we state results on the existence, uniqueness and continuous dependences of solutions for our equation of neutral type.

Keywords

Generalized ordinary differential equations Neutral measure functional differential equations Kurzweil–Henstock–Stieltjes integral 

Mathematics Subject Classification

26A39 34K40 34K05 

References

  1. 1.
    Afonso, S.M., Bonotto, E.M., Federson, M., Gimenes, L.P.: Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations. Math. Nachr. 285(5–6), 545–561 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arino, O., Benkhalti, R., Ezzinbi, K.: Existence results for initial value problems for neutral functional-differential equations. J. Differ. Equ. 138(1), 188–193 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)zbMATHGoogle Scholar
  4. 4.
    Das, P.C., Sharma, R.R.: On optimal controls for measure delay-differential equations. J. SIAM Control 9, 43–61 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Das, P.C., Sharma, R.R.: Existence and stability of measure differential equations. Czechoslovak Math. J. 22(97), 145–158 (1972)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dhage, B.C.: On system of abstract measure integro-differential inequalities and applications. Bull. Inst. Math. Acad. Sin. 18, 65–75 (1989)MathSciNetGoogle Scholar
  7. 7.
    Dhage, B.C., Bellale, S.S.: Abstract measure integro-differential equations. Global J. Math. Anal. 1, 91–108 (2007)Google Scholar
  8. 8.
    Dhage, B.C., Graef, J.R.: On stability of abstract measure delay integro-differential equations. Dynam. Syst. Appl. 19, 323–334 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Federson, M., Frasson, M., Mesquita, J. G., Tacuri, P.: Impulsive neutral functional dynamic equations on time scales (submitted)Google Scholar
  10. 10.
    Federson, M., Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19(11), 1201–1234 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations. J. Differ. Equ. 195(2), 313–331 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Federson, M., Mesquita, J.G., Slavík, A.: Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 252(6), 3816–3847 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fraňková, D.: Continuous dependence on a parameter of solutions of generalized differential equations. Časopis Pěst. Math. 114(3), 230–261 (1989)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fraňková, D.: Regulated functions. Math. Bohem. 116(1), 20–59 (1991)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hale, J.K.: A class of neutral equations with the fixed point property. Proc. Nat. Acad. Sci. USA 67, 136–137 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hale, J.K., Cruz, M.A.: Asymptotic behavior of neutral functional differential equations. Arch. Ration. Mech. Anal. 34, 331–353 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hale, J.K., Meyer, K.R.: A Class of Functional Equations of Neutral Type. Memoirs of the American Mathematical Society, vol. 76. American Mathematical Society, Providence (1967)Google Scholar
  19. 19.
    Henríquez, H.R., Pierri, M., Prokopczyk, A.: Periodic solutions of abstract neutral functional differential equations. J. Math. Anal. Appl. 385(2), 608–621 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henry, D.: Linear autonomous neutral functional differential equations. J. Differ. Equ. 15, 106–128 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hernández, E., O’Regan, D.: On a new class of abstract neutral differential equations. J. Funct. Anal. 261(12), 3457–3481 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Imaz, C., Vorel, Z.: Generalized ordinary differential equations in Banach space and applications to functional equations. Bol. Soc. Mat. Mex. 11(2), 47–59 (1966)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Joshi, S.R., Deo, S.G.: On abstract measure delay differential equations. An. Stiint. Univ. Al I. Cuza Iasi XXVI, 327–335 (1980)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7(82), 418–449 (1957)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kurzweil, J.: Addition to my paper “Generalized ordinary differential equations and continuous dependence on a parameter”. Czechoslovak Math. J. 9(84), 564–573 (1959)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Melvin, W.R.: A class of neutral functional differential equations. J. Differ. Equ. 12, 524–534 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ntouyas, S.K., Sficas, Y.G., Tsamatos, P.C.: Existence results for initial value problems for neutral functional-differential equations. J. Differ. Equ. 114(2), 527–537 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Oliva, F., Vorel, Z.: Functional equations and generalized ordinary differential equations. Bol. Soc. Mat. Mex. 11(2), 40–46 (1966)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pandit, S.G., Deo, S.G.: Differential Systems Involving Impulses. Lecture Notes in Mathematics, vol. 954. Springer, Berlin (1982)CrossRefzbMATHGoogle Scholar
  30. 30.
    Persson, J.: Fundamental theorems for linear measure differential equations. Math. Scand. 62(1), 19–43 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schmaedeke, W.W.: Optimal control theory for nonlinear vector differential equations containing measures. J. SIAM Control 3, 231–280 (1965)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Schwabik, S.: Generalized Ordinary Differential Equations. Series in Real Analysis, vol. 5. World Scientific Publishing Co., Inc., River Edge (1992)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sharma, R.R.: An abstract measure differential equations. Proc. Am. Math. Soc. 32, 503–510 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Slavík, A.: Dynamic equations on time scales and generalized ordinary differential equations. J. Math. Anal. Appl. 385(1), 534–550 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Slavík, A.: Measure functional differential equations with infinite delay. Nonlinear Anal. 79, 140–155 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tadmor, G., Turi, J.: Neutral equations and associated semigroups. J. Differ. Equ. 116(1), 59–87 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Talvila, E.: Integrals and Banach spaces for finite order distributions. Czechoslovak Math. J. 62(137), 77–104 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tvrdý, M.: Regulated functions and the Perron–Stieltjes integral. Časopis Pěst. Mat. 114(2), 187–209 (1989)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de Ciências ExatasUniversidade de BrasiliaBrasíliaBrazil
  3. 3.Faculdade de Ciências e TecnologiaUniversidade Estadual Paulista “Júlio de Mesquita Filho”Presidente PrudenteBrazil

Personalised recommendations