Journal of Dynamics and Differential Equations

, Volume 31, Issue 4, pp 2017–2028 | Cite as

A Proof of Bertrand’s Theorem Using the Theory of Isochronous Potentials

  • Rafael Ortega
  • David RojasEmail author


We give an alternative proof for the celebrated Bertrand’s theorem as a corollary of the isochronicity of a certain family of centers.


Bertrand’s theorem Isochronicity Potential center 

Mathematics Subject Classification

34C15 37C27 70F15 


  1. 1.
    Albouy, A.: Lectures on the Two-body Problem, Classical and Celestial Mechanics (Recife, 1993/1999), pp. 63–116. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  2. 2.
    Bertrand, J.: Théorème relatif au mouvement d’un point attiré vers un centre fixe. C. R. Acad. Sci. 77, 849–853 (1873)zbMATHGoogle Scholar
  3. 3.
    Cima, A., Mañosas, F., Villadelprat, J.: Isochronicity for several classes of Hamiltonian systems. J. Differ. Equ. 157, 373–413 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Corduneanu, C.: Principles of Differential and Integral Equations. AMS Chelsea Pub, Providence (1977)zbMATHGoogle Scholar
  5. 5.
    Ermakov, V.P.: Second order differential equations. Conditions of complete integrability, Universita Izvestia Kiev, Series III 9, 1–25 (1880). (Translation from Russian in: Appl. Anal. Discrete Math. 2 (2008), 123–145.)Google Scholar
  6. 6.
    Fejoz, J., Kaczmarek, L.: Sur le théorème de Bertrand (d’après Michael Herman). Ergod. Theory Dyn. Syst. 24, 1583–1589 (2004)CrossRefGoogle Scholar
  7. 7.
    Leach, P.G.L., Andriopoulos, K.: The Ermakov equation: a commentary. Appl. Anal. Discrete Math. 2, 146–157 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mañosas, F., Rojas, D., Villadelprat, J.: Study of the period function of a two-parameter family of centers. J. Math. Anal. Appl. 452, 188–208 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pinney, E.: The nonlinear differential equation \(y^{\prime \prime }+p(x)y+cy^{-3}=0\). Proc. Am. Math. Soc. 1, 681 (1950)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Urabe, M.: Potential forces which yield periodic motions of a fixed period. J. Math. Mech. 10, 569–578 (1961)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Urabe, M.: The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity. Arch. Ration. Mech. Anal. 11, 27–33 (1962)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zagryadskii, O.A., Kudryavtseva, E.A., Fedoseev, D.A.: A generalization of Bertrand’s theorem to surfaces of revolution. Sb. Math. 203, 1112–1150 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain

Personalised recommendations