Multi-bump Ground States of the Fractional Gierer–Meinhardt System on the Real Line

  • Juncheng Wei
  • Wen YangEmail author


In this paper we study ground-states of the fractional Gierer–Meinhardt system on the real line, namely the solutions of the problem
$$\begin{aligned} \left\{ \begin{array}{lll} (-\Delta )^su+u-\frac{u^2}{v}=0~&{}\quad \mathrm {in}~\mathbb {R},\\ (-\Delta )^sv+\varepsilon ^{2s}v-u^2=0~&{}\quad \mathrm {in}~\mathbb {R},\\ u,v>0,\quad u,v\rightarrow 0,&{}\quad \mathrm {as}~|x|\rightarrow \infty . \end{array}\right. \end{aligned}$$
We prove that given any positive integer k, there exists a solution to this problem for \(s \in [\frac{1}{2}, 1)\) exhibiting exactly k bumps in its \(u-\)component, separated from each other at a distance \( O(\varepsilon ^{\frac{1-2s}{4s}})\) for \( s \in (\frac{1}{2}, 1)\) and \(O(|\log \varepsilon |^{\frac{1}{2}})\) for \( s=\frac{1}{2}\), whenever \(\varepsilon \) is sufficiently small. After suitable scaling, each bump of u is exactly the same as the unique solution of
$$\begin{aligned} (-\Delta )^s U+U-U^2=0~\mathrm {in}~\mathbb {R},\quad 0<U(y)\rightarrow 0~\mathrm {as}~|y|\rightarrow \infty . \end{aligned}$$


Multi-bump solutions Gierer–Meinhardt system Fractional Laplacian 



The research of J. Wei is partially supported by NSERC of Canada. The research of W. Yang is supported by CAS Pioneer Hundred Talents Program Y8S3011001. We thank the anonymous referees for carefully reading the manuscript and suggestions.


  1. 1.
    Amick, C.J., Toland, J.F.: Uniqueness and related analytic properties for the Benjamin–Ono equation nonlinear Neumann problem in the plane. Acta Math. 167, 107–126 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dávila, J., del Pino, M., Wei, J.C.: Concentrating standing waves for the fractional nonlinear Schr\(\ddot{o}\)dinger equation. J. Differ. Equ. 256(2), 858–892 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction-diffusion equations. Indiana Univ. Math. J. 50(5), 443–507 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Doelman, A., Kaper, T.J., van der Ploeg, H.: Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer–Meinhardt equation. Methods Appl. Anal. 8, 387–414 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    del Pino, M., Kowalczyk, M., Chen, X.F.: The Gierer–Meinhardt system: the breaking of homoclinics and multi-bump ground states. Commun. Contemp. Math. 3(3), 419–439 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Del Pino, M., Kowalczyk, M., Wei, J.C.: Multi-bump ground states of the Gierer–Meinhardt system in \(R^2\). Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 53–85 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frank, R., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Math. 210(2), 261–318 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frank, R., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schröinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30–39 (1972)CrossRefzbMATHGoogle Scholar
  13. 13.
    Golovin, A.A., Matkowsky, B.J., Volpert, V.A.: Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E 72(2), 14 (2005). Article ID 026101MathSciNetCrossRefGoogle Scholar
  15. 15.
    Iron, D., Ward, M., Wei, J.C.: The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Phys. D 150, 25–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kolokolonikov, T., Ren, X.: Smoke-ring solutions of Gierer–Meinhardt system in \(R^3\). SIAM J. Appl. Dyn. Syst. 10(1), 251–277 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kolokolonikov, T., Wei, J.C.: Positive clustered layered solutions for the Gierer–Meinhardt system. J. Differ. Equ. 245(4), 964–993 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kolokolnikov, T., Wei, J.C., Yang, W.: On large ring solutions for Gierer–Meinhardt system in \(R^3\). J. Differ. Equ. 255(7), 1408–1436 (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Méndez, V., Campos, D., Fort, J.: Dynamical features of reaction-diffusion fronts in fractals. Phys. Rev. E 69(2), 7 (2004). Article ID 016613MathSciNetGoogle Scholar
  20. 20.
    Meinhardt, H.: The Algorithmic Beauty of Sea Shells, 2nd edn. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  22. 22.
    Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51(3), 541–579 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nec, Y.: Spike-like solutions to one dimensional Gierer–Meinhardt model with Levy flights. Stud. Appl. Math. 129(3), 272–299 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ni, W.M.: Diffusion, cross-diffusion, and their spike-layer steady states. Not. Am. Math. Soc. 45, 9–18 (1998)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ni, W.M., Wei, J.C.: On positive solutions concentrating on spheres for the Gierer–Meinhardt system. J. Differ. Equ. 221(1), 158–189 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Turing, A.M.: The chemical basis of a morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37–72 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ward, M.J., Wei, J.C.: Asymmetric spike patterns for the one-dimensional Gierer–Meinhardt model: equilibria and stability. Eur. J. Appl. Math. 13, 283–320 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wei, J.C.: On single interior spike solutions of Gierer–Meinhardt system: uniqueness and spectrum estimates. Eur. J. Appl. Math. 10, 353–378 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wei, J.C.: Existence and stability of spikes for the Gierer–Meinhardt system. In: Chipot, M. (ed.) Handbook of Differential Equations-Stationary Partial Differential Equations, vol. 5, pp. 489–581. Elsevier, Amsterdam (2008)Google Scholar
  30. 30.
    Wei, J.C., Winter, M.: On the two-dimensional Gierer–Meinhardt system with strong coupling. SIAM J. Math. Anal. 30, 1241–1263 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wei, J.C., Winter, M.: On multiple spike solutions for the two-dimensional Gierer–Meinhardt system: the strong coupling case. J. Differ. Equ. 178, 478–518 (2002)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wei, J.C., Winter, M.: Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case. J. Nonlinear Sci. 6, 415–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wei, J.C., Winter, M.: Mathematical Aspects of Pattern Formation in Biological Systems Applied Mathematical Sciences Series, vol. 189. Springer, Berlin (2014). ISBN: 978-4471-5525-6zbMATHGoogle Scholar
  34. 34.
    Wei, J.C., Winter, M.: Stable spike clusters for the one-dimensional Gierer–Meinhardt system. Eur. J. Appl. Math. 28(4), 576–635 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wei, J.C., Winter, M., Yang, W.: Stable spike clusters for precursor Gierer–Meinhardt system in \(R^2\). Calc. Var. PDEs 56, 142 (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations