Advertisement

Journal of Dynamics and Differential Equations

, Volume 30, Issue 3, pp 1311–1364 | Cite as

Rate-Independent Damage in Thermo-Viscoelastic Materials with Inertia

  • Giuliano Lazzaroni
  • Riccarda Rossi
  • Marita Thomas
  • Rodica Toader
Article
  • 163 Downloads

Abstract

We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio–Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.

Keywords

Partial damage Rate-independent systems Elastodynamics Phase-field models Heat equation Energetic solutions Local solutions 

Mathematics Subject Classification

35Q74 74H20 74R05 74C05 74F05 

Notes

Acknowledgements

This work has been supported by the Italian Ministry of Education, University, and Research through the PRIN 2010-11 grant for the project Calculus of Variations, by the European Research Council through the two Advanced Grants Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture (290888) and Analysis of Multiscale Systems Driven by Functionals (267802), and by GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) through the project Modelli variazionali per la propagazione di fratture, la delaminazione e il danneggiamento. G.L. acknowledges also the support of the University of Würzburg, of the DFG grant SCHL 1706/2-1, of SISSA, of the University of Vienna, and of the FWF project P27052. This paper was submitted on October 24, 2014; the first referee report was received by the authors on December 6, 2017.

References

  1. 1.
    Agostiniani, V.: Second order approximations of quasistatic evolution problems in finite dimension. Discrete Contin. Dyn. Syst. 32(4), 1125–1167 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonetti, E., Bonfanti, G.: Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(6), 1187–1208 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babadjian, J.-F., Millot, V.: Unilateral gradient flow of the Ambrosio–Tortorelli functional by minimizing movements. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(4), 779–822 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strain. Zeit. Angew. Math. Phys. 60, 205–236 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bartels, S., Roubíček, T.: Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. ESAIM Math. Model. Numer. Anal. 45(3), 477–504 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bonetti, E., Schimperna, G.: Local existence for Frémond’s model of damage in elastic materials. Contin. Mech. Thermodyn. 16(4), 319–335 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equ. 218(1), 91–116 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Burenkov, V.I.: Sobolev Spaces on Domains, vol. 137. B. G. Teubner, Leipzig (1998)zbMATHGoogle Scholar
  11. 11.
    Callister, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th edn. Wiley, Hoboken (2012)Google Scholar
  12. 12.
    Dal Maso, G., DeSimone, A., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40(1–2), 125–181 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176(2), 165–225 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 257–290 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dal Maso, G., Scala, R.: Quasistatic evolution in perfect plasticity as limit of dynamic processes. J. Dyn. Differ. Equ. 26(4), 915–954 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eiermann, K.: Modellmäßige deutung der wärmeleitfähigkeit von hochpolymeren, teil2: Verstreckte amorphe hochpolymere. Kolloid-Zeitschrift und Zeitschrift für Polymere 199(2), 125–128 (1964)CrossRefGoogle Scholar
  17. 17.
    Efendiev, M.A., Mielke, A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13(1), 151–167 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Francfort, G.A., Garroni, A.: A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182(1), 125–152 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fiaschi, A., Knees, D., Stefanelli, U.: Young-measure quasi-static damage evolution. Arch. Ration. Mech. Anal. 203(2), 415–453 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Francfort, G.A., Larsen, C.J.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56(10), 1465–1500 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer, New York (2007)zbMATHGoogle Scholar
  22. 22.
    Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33, 1083–1103 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Feireisl, E., Petzeltová, H., Rocca, E.: Existence of solutions to a phase transition model with microscopic movements. Math. Methods Appl. Sci. 32(11), 1345–1369 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Frémond, M.: Non-Smooth Thermomechanics. Springer-Verlag, Berlin, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fracture. Calc. Var. Part. Differ. Equ. 22, 129–172 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Garroni, A., Larsen, C.J.: Threshold-based quasi-static brittle damage evolution. Arch. Ration. Mech. Anal. 194(2), 585–609 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hahn, H.: Über Annäherung an Lebesgue’sche Integrale durch Riemann’sche Summen. Sitzungsber. Math. Phys. Kl. K. Akad. Wiss. Wien 123, 713–743 (1914)zbMATHGoogle Scholar
  28. 28.
    Heinemann, C., Kraus, C.: Complete damage in linear elastic materials: modeling, weak formulation and existence results. Calc. Var. Part. Differ. Equ. 54(1), 217–250 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Iurlano, F.: Fracture and plastic models as \(\Gamma \)-limits of damage models under different regimes. Adv. Calc. Var. 6(2), 165–189 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Klein, R.: Laser Welding of Plastics. Wiley-VCH, Hoboken (2012)Google Scholar
  32. 32.
    Kočvara, M., Mielke, A., Roubíček, T.: A rate-independent approach to the delamination problem. Math. Mech. Solids 11, 423–447 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18(9), 1529–1569 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(4), 565–616 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, New York (2005)Google Scholar
  36. 36.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, Berlin, Heidelberg (1972)CrossRefzbMATHGoogle Scholar
  37. 37.
    Larsen, C.J., Ortner, C., Süli, E.: Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20(7), 1021–1048 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lazzaroni, G., Rossi, R., Thomas, M., Toader, R.: Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics. J. Phys. Conf. Ser 727, 012009, 20 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Lazzaroni, G., Toader, R.: A model for crack propagation based on viscous approximation. Math. Models Methods Appl. Sci. 21(10), 2019–2047 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Mielke, A.: Evolution in rate-independent systems (Ch.6). In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V, Amsterdam (2005)CrossRefGoogle Scholar
  41. 41.
    Mielke, A.: Differential, energetic and metric formulations for rate-independent processes (Ch. 3). In: Ambrosio, L., Savaré, G. (eds.) Nonlinear PDEs and Applications.C.I.M.E. Summer School, Cetraro, Italy 2008, pp. 87–170. Springer, Heidelberg (2011)Google Scholar
  42. 42.
    Martins, J.A.C., Monteiro Marques, M.D.P., Petrov, A.: On the stability of quasi-static paths for finite dimensional elastic–plastic systems with hardening. ZAMM Z. Angew. Math. Mech. 87(4), 303–313 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Mielke, A., Petrov, A., Martins, J.A.C.: Convergence of solutions of kinetic variational inequalities in the rate-independent quasi-static limit. J. Math. Anal. Appl. 348(2), 1012–1020 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Mielke, A., Roubíček, T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16(2), 177–209 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Mielke, A., Roubíček, T.: Rate-Independent Systems. Theory and Application, volume 193 of Applied Mathematical Sciences. Springer, New York (2015)zbMATHGoogle Scholar
  46. 46.
    Martins, J.A.C., Rebrova, N.V., Sobolev, V.A.: On the (in)stability of quasi-static paths of smooth systems: definitions and sufficient conditions. Math. Methods Appl. Sci. 29(6), 741–750 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mielke, A., Roubíček, T., Stefanelli, U.: \(\Gamma \)-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Differ. Equ. 31, 387–416 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Mielke, A., Rossi, R., Savaré, G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25(2), 585–615 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Martins, J.A.C., Simões, F.M.F., Gastaldi, F., Monteiro Marques, M.D.P.: Dissipative graph solutions for a \(2\) degree-of-freedom quasistatic frictional contact problem. Int. J. Eng. Sci. 33(13), 1959–1986 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA Nonlinear Differ. Equ. Appl. 11(2), 151–189 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Nardini, L.: A note on the convergence of singularly perturbed second order potential-type equations. J. Dyn. Differ. Equ. 29(2), 783–797 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Nečas, J., Štípl, M.: A paradox in the theory of linear elasticity. Appl. Mat. 21, 431–433 (1976)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Boston (2010)zbMATHGoogle Scholar
  56. 56.
    Roubíček, T.: Rate-independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32(7), 825–862 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Roubíček, T.: Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 40, 256–297 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Roubíček, T.: Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J. Math. Anal. 45(1), 101–126 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Roubíček, T.: Nonlinearly coupled thermo-visco-elasticity. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 1243–1275 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications, volume 153 of International Series of Numerical Mathematics, 2nd edn. Birkhäuser/Springer Basel AG, Basel (2013)CrossRefGoogle Scholar
  61. 61.
    Rossi, R., Roubíček, T.: Thermodynamics and analysis of rate-independent adhesive contact at small strains. Nonlinear Anal. 74(10), 3159–3190 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Rocca, E., Rossi, R.: A degenerating PDE system for phase transitions and damage. Math. Models Methods Appl. Sci. 24(7), 1265–1341 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Rocca, E., Rossi, R.: “Entropic” solutions to a thermodynamically consistent PDE system for phase transitions and damage. SIAM J. Math. Anal. 47(4), 2519–2586 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Roubíček, T., Tomassetti, G.: Thermomechanics of damageable materials under diffusion: modelling and analysis. Z. Angew. Math. Phys. 66(6), 3535–3572 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Roubíček, T., Thomas, M., Panagiotopoulos, C.: Stress-driven local-solution approach to quasistatic brittle delamination. Nonlinear Anal. Real World Appl. 22, 645–663 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Scala, R.: Limit of viscous dynamic processes in delamination as the viscosity and inertia vanish. ESAIM Control Optim. Calc. Var. 23(2), 593–625 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Thomas, M.: Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. Ser. S 6, 235–255 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain: existence and regularity results. Zeit. angew. Math. Mech. 90(2), 88–112 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Wedler, G.: Lehrbuch der physikalischen Chemie, 4th edn. Wiley-VCH, Hoboken (1997)Google Scholar
  70. 70.
    Zel’dovič, J.B., Rajzer, J.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Illinois (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DMA, Università degli Studi di Napoli Federico IINaplesItaly
  2. 2.DIMI, Università degli Studi di BresciaBresciaItaly
  3. 3.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  4. 4.DMIF, Università degli Studi di UdineUdineItaly

Personalised recommendations