Advertisement

Local and Global Stabilities of a Viral Dynamics Model with Infection-Age and Immune Response

  • Jianhua Pang
  • Jing Chen
  • Zijian Liu
  • Ping Bi
  • Shigui RuanEmail author
Article
  • 205 Downloads

Abstract

In this paper, we construct an infection-age model to study the interaction between viruses and the immune system within the host. In the model, the mortality rate of infected cells, the rate that cytotoxic T lymphocytes (CTL) kill infected cells, the rate that infected cells produce new virus, and the CTL proliferate rate may depend on the infection-age. The basic reproduction number and the threshold for the existence of steady states are obtained. Local stability of both the infection-free and infection steady states is studied by analyzing the linearized systems. Global stability of the infection-free steady state is obtained by investigating a renewal integral equation and global stability of the infection steady state is obtained by constructing a Liapunov functional. Numerical simulations are presented to verify the theoretical results.

Keywords

Age-structured model Viral dynamics Integrated solution Liapunov functional Local and global stabilities 

Notes

Acknowledgements

We would like to thank the reviewers for their constructive comments, which greatly improve this paper. This research was partially supported by National Natural Science Foundation of China (11401117, 11401060, 11401217, 11771168), Improvement Project for Young Teachers of Guangxi Province (KY2016YB246), and National Science Foundation (DMS-1412454).

References

  1. 1.
    Althaus, C.L., De Vos, A.S., De Boer, R.J.: Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, \(\cal{R}_0\). J. Virol. 83, 7659–7667 (2009)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)Google Scholar
  3. 3.
    Arnaout, R.A., Nowak, M.A., Wodarz, D.: HIV-1 dynamics revisited: Biphasic decay by cytotoxic lymphocyte killing? Proc. R. Soc. Lond. B 265, 1347–1354 (2000)CrossRefGoogle Scholar
  4. 4.
    Browne, C.J.: A multi-strain virus model with infected cell age structure: application to HIV. Nonlin. Anal. Real World Appl. 22, 354–372 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Browne, C.J., Pilyugin, S.S.: Global analysis of age-structured within-host virus model. Discrete Contin. Dyn. Syst. B 18, 1999–2017 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Yang, J., Zhang, F.: The global stability of an SIRS model with infection age. Math. Biosci. Eng. 11, 449–469 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. In: Favini, A., Obrecht, E. (eds.) Differential Equations in Banach Spaces, Lecture Notes in Mathematics, vol. 1223, pp. 61–73. Springer, Berlin (1986)CrossRefGoogle Scholar
  8. 8.
    Gilchrist, M.A., Coombs, D., Perelson, A.S.: Optimizing within-host viral fitness: infected cell lifespan and virion production rate. J. Theor. Biol. 229, 281–288 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gurtin, M.E., MacCamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54, 281–300 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence (1988)Google Scholar
  11. 11.
    Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–395 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huang, G., Liu, X., Takeuchi, Y.: Liapunov functions and global stability for age-structured HIV infection model. SIAM J. Appl. Math. 72, 25–38 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini Editori e Stampatori, Pisa (1995)Google Scholar
  14. 14.
    Inaba, H., Sekine, H.: A mathematical model for Chagas disease with infection-age-dependent infectivity. Math. Biosci. 190, 39–69 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Magal, P.: Compact attrators for time-periodic age-structured population models. Electron. J. Differ. Equ. 65, 1–35 (2001)Google Scholar
  16. 16.
    Magal, P., McCluskey, C.: Two-group infection age model including an application to nosocomial infection. SIAM J. Appl. Math. 73, 1058–1095 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Magal, P., McCluskey, C.C., Webb, G.F.: Liapunov fucntional and global asymptoticalc stability for an infection-age model. Appl. Anal. 89, 1109–1140 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Magal, P., Thieme, H.R.: Eventual compactness for a semiflow generated by an age structured models. Commun. Pure Appl. Anal. 3, 695–727 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Martcheva, M., Thieme, H.R.: Progression age enhanced backward bifurcation in an epidemic model with superinfection. J. Math. Biol. 46, 385–424 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  22. 22.
    Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic model of virus infection with application. Rocky Mt. J. Math. 38, 1573–1585 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Nelson, P.W., Gilchrist, M.A., Coombs, D., Hyman, J., Perelson, A.S.: An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1, 267–288 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)CrossRefGoogle Scholar
  25. 25.
    Nowak, M.A., May, R.M.: Viral Dynamics. Oxford University Press, Oxford (2000)Google Scholar
  26. 26.
    Pang, J., Cui, J.: Analysis of a hepatitis B viral infection model with immune response delay. Int. J. Biomath. 10(2), 1750020 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pereson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002)CrossRefGoogle Scholar
  28. 28.
    Shen, M., Xiao, Y., Rong, L.: Global stability of an infection-age structured HIV-1 model linking with in-host and between-host dynamics. Math. Biosci. 263, 37–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shu, H., Wang, L., Watmough, J.: Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses. SIAM J. Appl. Math. 73, 1280–1302 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Thieme, H.R., Castillo-Chavez, C.: How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53, 1447–1479 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl. Math. Comput. 241, 298–316 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67, 901–934 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, Z., Liu, X.: A chronic viral infection model with immune impairment. J. Theor. Biol. 249, 532–542 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)zbMATHGoogle Scholar
  36. 36.
    Wodarz, D.: Killer Cell Dynamics–Mathematical and Computational Approaches to Immunology. Springer, New York (2007)zbMATHGoogle Scholar
  37. 37.
    Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002)CrossRefGoogle Scholar
  38. 38.
    Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. Gen. Virol. 84, 1743–1750 (2003)CrossRefGoogle Scholar
  39. 39.
    Wodarz, D., Nowak, M.A.: Immune responses and viral phenotype: Do replication rate and cytopathogenicity influence virus load? J. Theor. Med. 2, 113–127 (2000)CrossRefzbMATHGoogle Scholar
  40. 40.
    Yang, Y., Ruan, S., Xiao, D.: Global stability of an age-structured virus dynamics model with Beddington–DeAngelis infection function. Math. Biosci. Eng. 12, 859–877 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceGuangxi University of Science and TechnologyLiuzhouChina
  2. 2.Department of MathematicsUniversity of MiamiCoral GablesUSA
  3. 3.College of Mathematics and StatisticsChongqing Jiaotong UniversityChongqingChina
  4. 4.Department of Mathematics, Shanghai Key Laboratory of PMMPEast China Normal UniversityShanghaiChina

Personalised recommendations