Journal of Dynamics and Differential Equations

, Volume 30, Issue 3, pp 1221–1245 | Cite as

Finite Intersection Property and Dynamical Compactness

  • Wen Huang
  • Danylo Khilko
  • Sergiĭ Kolyada
  • Alfred Peris
  • Guohua ZhangEmail author


Dynamical compactness with respect to a family as a new concept of chaoticity of a dynamical system was introduced and discussed in Huang et al. (J Differ Equ 260(9):6800–6827, 2016). In this paper we continue to investigate this notion. In particular, we prove that all dynamical systems are dynamically compact with respect to a Furstenberg family if and only if this family has the finite intersection property. We investigate weak mixing and weak disjointness by using the concept of dynamical compactness. We also explore further difference between transitive compactness and weak mixing. As a byproduct, we show that the \(\omega _{{\mathcal {F}}}\)-limit and the \(\omega \)-limit sets of a point may have quite different topological structure. Moreover, the equivalence between multi-sensitivity, sensitive compactness and transitive sensitivity is established for a minimal system. Finally, these notions are also explored in the context of linear dynamics.


Dynamical topology Dynamical compactness Transitive compactness Sensitive compactness Topological weak mixing Multi-sensitivity Transitive sensitivity Linear dynamics Hypercyclic operator 

Mathematics Subject Classification

Primary 37B05 Secondary 54H20 47A16 



Wen Huang and Sergiĭ Kolyada acknowledge the hospitality of the School of Mathematical Sciences of the Fudan University, Shanghai. Sergiĭ Kolyada also acknowledges the hospitality of the Max-Planck-Institute für Mathematik (MPIM) in Bonn, the Departament de Matemàtica Aplicada of the Universitat Politècnica de València, the partial support of Project MTM2013-47093-P, and the Department of Mathematics of the Chinese University of Hong Kong. We thank the referees for careful reading and constructive comments that have resulted in substantial improvements to this paper. Wen Huang was supported by NNSF of China (11225105, 11431012); Alfred Peris was supported by MINECO, Projects MTM2013-47093-P and MTM2016-75963-P, and by GVA, Project PROMETEOII/2013/013; and Guohua Zhang was supported by NNSF of China (11671094).


  1. 1.
    Akin, E.: Recurrence in topological dynamics. The University Series in Mathematics, Plenum Press, New York, Furstenberg families and Ellis actions (1997)Google Scholar
  2. 2.
    Akin, E., Auslander, J., Berg, K.: When is a transitive map chaotic Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, pp. 25–40, de Gruyter, Berlin (1996)Google Scholar
  3. 3.
    Akin, E., Glasner, E.: Residual properties and almost equicontinuity. J. Anal. Math. 84, 243–286 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akin, E., Kolyada, S.: Li–Yorke sensitivity. Nonlinearity 16(4), 1421–1433 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auslander, J.: Minimal flows and their extensions. North-Holland Mathematics Studies, vol. 153. North-Holland Publishing Co., Amsterdam, Notas de Matemática [Mathematical Notes], 122 (1988)Google Scholar
  6. 6.
    Auslander, J., Yorke, J.A.: Interval maps, factors of maps, and chaos. Tôhoku Math. J. (2) 32(2), 177–188 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Google Scholar
  8. 8.
    Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167(1), 94–112 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blanchard, F., Huang, W.: Entropy sets, weakly mixing sets and entropy capacity. Discrete Contin. Dyn. Syst. 20(2), 275–311 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    de la Rosa, M., Read, C.: A hypercyclic operator whose direct sum \(T\oplus T\) is not hypercyclic. J. Oper. Theory 61(2), 369–380 (2009)zbMATHGoogle Scholar
  11. 11.
    Dowker, Y.N., Friedlander, F.G.: On limit sets in dynamical systems. Proc. Lond. Math. Soc. (3) 4, 168–176 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Downarowicz, T.: Survey of odometers and Toeplitz flows. Algebraic and topological dynamics. Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, pp. 7–37 (2005)Google Scholar
  13. 13.
    Edwards, R.E.: Functional analysis. Dover Publications Inc, New York. Theory and applications. Corrected reprint of the 1965 original (1995)Google Scholar
  14. 14.
    Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (1981)Google Scholar
  16. 16.
    Furstenberg, H., Weiss, B.: Topological dynamics and combinatorial number theory. J. Anal. Math. 34(1978), 61–85 (1979)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Glasner, E., Weiss, B.: Sensitive dependence on initial conditions. Nonlinearity 6(6), 1067–1075 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grosse-Erdmann, K.-G., Peris, A.: Weakly mixing operators on topological vector spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, vol. 104, no. 2, pp. 413–426 (2010)Google Scholar
  19. 19.
    Grosse-Erdmann, K.-G., Peris-Manguillot, A.: Linear chaos, Universitext. Springer, London (2011)Google Scholar
  20. 20.
    Guckenheimer, J.: Sensitive dependence to initial conditions for one-dimensional maps. Commun. Math. Phys. 70(2), 133–160 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Halpern, J.D.: Bases in vector spaces and the axiom of choice. Proc. Am. Math. Soc. 17, 670–673 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    He, W.H., Zhou, Z.L.: A topologically mixing system whose measure center is a singleton. Acta Math. Sin. (Chin. Ser.) 45(5), 929–934 (2002)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Huang, W., Khilko, D., Kolyada, S., Zhang, G.: Dynamical compactness and sensitivity. J. Differ. Equ. 260(9), 6800–6827 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Huang, W., Kolyada, S., Zhang, G.: Analogues of Auslander–Yorke theorems for multi-sensitivity. Ergod. Theory Dyn. Syst. 22, 1–15 (2016). doi: 10.1017/etds.2016.48 zbMATHGoogle Scholar
  25. 25.
    Huang, W., Ye, X.: Devaney’s chaos or 2-scattering implies Li–Yorke’s chaos. Topol. Appl. 117(3), 259–272 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kelley, J.L.: General topology. Graduate Texts in Mathematics, vol. 27. Springer, New York. Reprint of the 1955 edition [Van Nostrand, Toronto, ON] (1975)Google Scholar
  27. 27.
    Kolyada, S., Snoha, L., Trofimchuk, S.: Noninvertible minimal maps. Fund. Math. 168(2), 141–163 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Li, J.: Transitive points via Furstenberg family. Topol. Appl. 158(16), 2221–2231 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, J., Ye, X.D.: Recent development of chaos theory in topological dynamics. Acta Math. Sin. (Engl. Ser.) 32(1), 83–114 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, H., Liao, L., Wang, L.: Thickly syndetical sensitivity of topological dynamical system. Discrete Dyn. Nat. Soc. (2014). Art. ID 583431, 4Google Scholar
  31. 31.
    Moothathu, T.K.S.: Stronger forms of sensitivity for dynamical systems. Nonlinearity 20(9), 2115–2126 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mycielski, J.: Independent sets in topological algebras. Fund. Math. 55, 139–147 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Oprocha, P., Zhang, G.: On local aspects of topological weak mixing in dimension one and beyond. Stud. Math. 202(3), 261–288 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Oprocha, P., Zhang, G.: On local aspects of topological weak mixing, sequence entropy and chaos. Ergod. Theory Dyn. Syst. 34(5), 1615–1639 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Petersen, K.E.: Disjointness and weak mixing of minimal sets. Proc. Am. Math. Soc. 24, 278–280 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Read, C.J.: The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators. Isr. J. Math. 63(1), 1–40 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ruelle, D.: Dynamical systems with turbulent behavior. In: Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., vol. 80, pp. 341–360. Springer, Berlin (1978)Google Scholar
  38. 38.
    Šarkovskiĭ, A.N.: Continuous mapping on the limit points of an iteration sequence. Ukrain. Mat. Ž. 18(5), 127–130 (1966)MathSciNetGoogle Scholar
  39. 39.
    Weiss, B.: A survey of generic dynamics. Descriptive set theory and dynamical systems (Marseille-Luminy, 1996), London Math. Soc. Lecture Note Ser., vol. 277, pp. 273–291. Cambridge Univ. Press, Cambridge (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wen Huang
    • 1
    • 2
  • Danylo Khilko
    • 3
  • Sergiĭ Kolyada
    • 4
  • Alfred Peris
    • 5
  • Guohua Zhang
    • 6
    Email author
  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of MathematicsSichuan UniversityChengduChina
  3. 3.Département de Mathématiques et ApplicationsÉcole Normale SupŕieureParisFrance
  4. 4.Institute of Mathematics, NASUKyivUkraine
  5. 5.Institut Universitari de Matemàtica Pura i AplicadaUniversitat Politècnica de ValènciaValènciaSpain
  6. 6.School of Mathematical Sciences and LMNSFudan University and Shanghai Center for Mathematical SciencesShanghaiChina

Personalised recommendations