Journal of Dynamics and Differential Equations

, Volume 30, Issue 3, pp 1145–1160 | Cite as

Further Dense Properties of the Space of Circle Diffeomorphisms with a Liouville Rotation Number

  • Philipp KundeEmail author


In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).


Circle diffeomorphisms Orbit equivalence Rotation number Approximation by conjugation-method Odometer 

Mathematics Subject Classification

Primary 37E10 Secondary 37A20 37C05 37E45 



The author would like to thank the referee for careful proofreading and helpful comments.


  1. 1.
    Anosov, D.V., Katok, A.: New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trudy Moskov. Mat. Obsc. 23, 3–36 (1970)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. 24(5), 1477–1520 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Herman, M.R.: Sur la conjugasion différentiable des difféomorphismes du cercle a des rotations. Publ. I. H. E. S. 49, 5–233 (1979)CrossRefzbMATHGoogle Scholar
  4. 4.
    Katznelson, Y.: The action of diffeomorphism of the circle on the Lebesgue measure. J. Anal. Math. 36(1), 156–166 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Knopp, K.: Theorie und Anwendungen der unendlichen Reihe. Springer, Berlin (1964)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kunde, P.: Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. J. Mod. Dyn. 10, 439–481 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Matsumoto, S.: Dense properties of the space of the circle diffeomorphisms with a Liouville number. Nonlinearity 25, 1495–1511 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matsumoto, S.: A generic dimensional property of the invariant measures for circle diffeomorphisms. J. Mod. Dyn. 7, 553–563 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yoccoz, J.-C.: Centralisateurs et conjugasion différentiable des difféomorphismes du cercle. Astérisque 231, 89–242 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations