Journal of Dynamics and Differential Equations

, Volume 30, Issue 3, pp 1119–1143 | Cite as

Multiple Solutions for a Class of Nonhomogeneous Fractional Schrödinger Equations in \(\mathbb {R}^{N}\)

  • Vincenzo Ambrosio
  • Hichem Hajaiej


This paper is concerned with the following fractional Schrödinger equation
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s} u+u= k(x)f(u)+h(x) \text{ in } \mathbb {R}^{N}\\ u\in H^{s}(\mathbb {R}^{N}), \, u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$
where \(s\in (0,1),N> 2s, (-\Delta )^{s}\) is the fractional Laplacian, k is a bounded positive function, \(h\in L^{2}(\mathbb {R}^{N}), h\not \equiv 0\) is nonnegative and f is either asymptotically linear or superlinear at infinity. By using the s-harmonic extension technique and suitable variational methods, we prove the existence of at least two positive solutions for the problem under consideration, provided that \(|h|_{2}\) is sufficiently small.


Fractional Laplacian Mountain pass theorem Extension method Positive solutions 

Mathematics Subject Classification

35A15 35J60 35R11 45G05 


  1. 1.
    Ambrosio, V.: Ground states for a fractional scalar field problem with critical growth. Differ. Integral Equ. 30(1–2), 115–132 (2017)MathSciNetMATHGoogle Scholar
  2. 2.
    Ambrosio, V.: Ground states for superlinear fractional Schrödinger equations in \({\mathbb{R}}^{N}\). Ann. Acad. Sci. Fenn. Math. 41(2), 745–756 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ambrosio, V.: Multiple solutions for a nonlinear scalar field equation involving the fractional Laplacian, preprint arXiv:1603.09538
  4. 4.
    Ambrosio, V.: Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differ. Equ. Paper No. 151, pp. 12 (2016)Google Scholar
  5. 5.
    Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267(1), 1–32 (1981)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bartsch, T., Liu, Z., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differ. Equ. 29(1–2), 25–42 (2004)MATHGoogle Scholar
  7. 7.
    Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^{N}\). Comm. Partial Differ. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 23–53 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dao-Min, M.C., Huan-Song, Z.: Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \(\mathbb{R}^{N}\). Proc. Roy. Soc. Edinburgh Sect. A 126(2), 443–463 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chang, X.J., Wang, Z.Q.: Ground state of scalar field equations involving fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54(6), 061504 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cho, Y., Fall, M.M., Hajaiej, H., Markowich, P., Trabelsi, S.: Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity. Anal. Appl. (2016). doi: 10.1142/S0219530516500056
  15. 15.
    Cho, Y., Hajaiej, H., Hwang, G., Ozawa, T.: On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity. Funkcial. Ekvac. 56(2), 193–224 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Colorado, E., de Pablo, A., Sánchez, U.: Perturbations of a critical fractional equation. Pacific J. Math. 271(1), 65–85 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. math. 136, 521–573 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^{N}\), (2015). arXiv:1506.01748vl
  19. 19.
    Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)CrossRefMATHGoogle Scholar
  20. 20.
    Fall, M.M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28(6), 1937–1961 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142, 1237–1262 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Figueiredo, G.M., Siciliano, G.: A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in \({\mathbb{R}}^{N}\), NoDEA Nonlinear Differ. Equ. Appl. 23(2), Art. 12, 22 pp. (2016)Google Scholar
  23. 23.
    Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrdinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Frank, R., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Comm. Pure Appl. Math. 69(9), 1671–1726 (2016)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Jeanjean, L.: Two positive solutions for a class of nonhomogeneous elliptic equations. Differ. Integral Equ. 10(4), 609–624 (1997)MathSciNetMATHGoogle Scholar
  26. 26.
    Jeanjean, J.: On the existence of bounded Palais–Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N\). Proc. Roy. Soc. Edinburgh Sect. A 129(4), 787–809 (1999)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jeanjean, L., Tanaka, K.: A positive solution for an asymptotically linear elliptic problem on \(\mathbb{R}^{N}\) autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and sufficient conditions for the fractional Gargliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized boson equations, Harmonic analysis and nonlinear partial differential equations, 159–175, RIMS Kkyroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto (2011)Google Scholar
  29. 29.
    Hajaiej, H.: Existence of minimizers of functional involving the fractional gradient in the absence of compactness, symmetry and monotonicity. J. Math. Anal. Appl. 399(1), 17–26 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hajaiej, H.: On the optimality of the assumptions used to prove the existence and symmetry of minimizers of some fractional constrained variational problems. Ann. Henri Poincaré 14(5), 1425–1433 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hajaiej, H.: Symmetry of minimizers of some fractional problems. Appl. Anal. 94(4), 694–700 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Laskin, N.: Fractional quantum mechanics and Lèvy path integrals. Phys. Lett. A 268, 298–305 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lions, P.L.: Symetrié et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Liu, C., Wang, Z., Zhou, H.S.: Asymptotically linear Schrödinger equation with potential vanishing at infinity. J. Differ. Equ. 245(1), 201–222 (2008)CrossRefMATHGoogle Scholar
  36. 36.
    Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54(3), 2985–3008 (2015)CrossRefMATHGoogle Scholar
  37. 37.
    Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional problems, with a foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge. xvi+383 pp. (2016)Google Scholar
  38. 38.
    Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \(\mathbb{R}^{N}\). Calc. Var. Partial Differ. Equ. 54(3), 2785–2806 (2015)CrossRefMATHGoogle Scholar
  39. 39.
    Rabinowitz, P.H.: Multiple critical points of perturbed symmetric functionals. Trans. Am. Math. Soc. 272(2), 753–769 (1982)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Rabinowitz, P.: On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43(2), 270–291 (1992)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^{N}\). J. Math. Phys. 54, 031501 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Secchi, S.: On some nonlinear fractional equations involving the Bessel potential. J. Dyn. Differ. Equ. (2016). doi: 10.1007/s10884-016-9521-y
  43. 43.
    Servadei, R.: Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity. Contemp. Math. 595, 317–340 (2013)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27(2), 187–207 (2014)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (1990)MATHGoogle Scholar
  46. 46.
    Stuart, C.A., Zhou, H.S.: Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(\mathbb{R}^{N}\). Comm. Partial Differential Equations 24(9–10), 1731–1758 (1999)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Torres, C.L.: Non-homogeneous fractional Schrödinger equation. J. Fract. Calc. Appl. 6(2), 108–114 (2015)MathSciNetGoogle Scholar
  48. 48.
    Wang, Z., Zhou, H.S.: Positive solutions for a nonhomogeneous elliptic equation on \(\mathbb{R}^{N}\) without (AR) condition. J. Math. Anal. Appl. 353(1), 470–479 (2009)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Zhu, X.P.: A perturbation result on positive entire solutions of a semilinear elliptic equation. J. Differ. Equ. 92(2), 163–178 (1991)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Zhu, X.P., Zhu, H.S.: Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 115(3–4), 301–318 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Pure e Applicate (DiSPeA)Università degli Studi di Urbino ’Carlo Bo’UrbinoItaly
  2. 2.Department of MathematicsCalifornia State University, Los AngelesLos AngelesUSA

Personalised recommendations