Advertisement

Journal of Dynamics and Differential Equations

, Volume 30, Issue 3, pp 1053–1062 | Cite as

Variational Principles for Entropies of Nonautonomous Dynamical Systems

  • Leiye Xu
  • Xiaomin Zhou
Article
  • 157 Downloads

Abstract

In this paper, we first introduce the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case. Then we show that there is certain variational relation for nonautonomous dynamical systems.

Keywords

Nonautonomous Measure-theoretical entropies Variational principles 

Mathematics Subject Classification

Primary 37B40 37A35 37B10 37A05 

References

  1. 1.
    Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bis, A.: Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems, J. Dynam. Differential Equations, to appearGoogle Scholar
  3. 3.
    Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brin, M., Katok, A.: On local entropy. Geometric dynamics (Rio de Janeiro, 1981), 30–38. In: Lecture Notes in Mathematics, 1007, Springer, Berlin (1983)Google Scholar
  5. 5.
    Canovas, J.S.: Some results on (\(X, f, A\)) nonautonomous systems. Grazer Math. Ber. 346, 53–60 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Federer, H.: Geometric Measure Theory. Springer, New York (1969)zbMATHGoogle Scholar
  7. 7.
    Feng, D.J., Huang, W.: Variational priciples for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–2254 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Glasner, E.: Ergodic Theory via Joinings, vol. 101. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  9. 9.
    Goodman, T.N.T.: Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 3, 176–180 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goodwyn, L.W.: Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 23, 679–688 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, X., Wen, X., Zeng, F.: Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 8(1), 43–48 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kawan, Ch.: Metric entropy of nonautonomous dynamical systems. Nonauton. Dyn. Syst. 1, 26–52 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces. Dokl. Akad. Sci. SSSR 119, 861–864 (1958)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dynam. 4(2–3), 205–233 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kolyada, S., Misiurewicz, M., Snoha, L.: Topological entropy of nonautonomous piecewise monotone dynamical systems on the inteval. Fund. Math. 160, 161–181 (1990)zbMATHGoogle Scholar
  16. 16.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pesin, Ya.B.: Dimension Theory in Dynamical Systems. Contemporary Views and Applications. University of Chicago Press, Chicago (1997)Google Scholar
  18. 18.
    Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, J., Chen, L.: Lower bounds of the topological entropy for nonautonomous dynamical systems. Appl. Math. J. Chin. Univ. Ser. B 24, 76–82 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhu, Y., Liu, Z., Zhang, W.: Entropy of nonautonomous dynamical systems. J. Korean Math. Soc 49, 165–185 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations