Existence of Affine-Periodic Solutions to Newton Affine-Periodic Systems

  • Fei XuEmail author
  • Xue Yang
  • Yong Li
  • Moxin Liu


In this paper, we prove that every Newton affine-periodic system admits an affine-periodic solution via the lower and upper solutions method and the homotopy invariance of Leray-Schauder degree. Furthermore, we give some specific examples about oscillators to illustrate our main results.


Newton affine-periodic system Affine-periodic solution Lower and upper solutions method 

Mathematics Subject Classification (2010)

Primary: 34C25 Secondary: 34B15 



The authors would like to thank the reviewer and the editor for their meticulous reviews and useful suggestions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chang X, Li Y. Rotating periodic solutions of second order dissipative dynamical systems. Discrete Contin Dyn Syst 2016;36(2):643–52.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cheng C, Huang F, Li Y. Affine-periodic solutions and pseudo affine-periodic solutions for differential equations with exponential dichotomy and exponential trichotomy. J Appl Anal Comput 2016;6(4):950–67.MathSciNetGoogle Scholar
  3. 3.
    De Coster C, Habets P. 2006. Two-point boundary value problems: lower and upper solutions, volume 205. Elsevier.Google Scholar
  4. 4.
    Dragoni GS. II problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine. Math Ann 1931;105(1):133–43.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    El-Gebeily M, O’Regan D. Upper and lower solutions and quasilinearization for a class of second order singular nonlinear differential equations with nonlinear boundary conditions. Nonlinear Anal Real World Appl 2007;8(2):636–45.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Erbe LH. Existence of solutions to boundary value problems for second order differential equations. Nonlinear Anal 1982;6(11):1155–62.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fabry C. Nagumo conditions for systems of second-order differential equations. J Math Anal Appl 1985;107(1):132–43.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fabry CH, Habets P. The Picard boundary value problem for nonlinear second order vector differential equations. J Differ Equ 1981;42(2):186–98.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Franco D, O’Regan D. A new upper and lower solutions approach for second order problems with nonlinear boundary conditions. Arch Inequal Appl 2003;1(3-4):413–9.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Howes FA. Differential inequalities of higher order and the asymptotic solution of nonlinear boundary value problems. SIAM J Math Anal 1982;13(1):61–80.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Korman PH. Remarks on Nagumo’s condition. Portugal Math 1998;55(1):1–9.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Li Y, Huang F. Levinson’s problem on affine-periodic solutions. Adv Nonlinear Stud 2015;15(1):241–52.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Li Y, Zhou Q. An existence theorem for almost-periodic solutions to second-order ordinary differential equations. Acta Sci Natur Univ Jilin 1990;1:15–8.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Liu M, Xu F, Yang X, Li Y. Existence of dissipative-affine-periodic solutions for dissipative-affine-periodic systems. J Appl Anal Comput 2017;7(4):1624–36.MathSciNetGoogle Scholar
  15. 15.
    Meng X, Li Y. Affine-periodic solutions for discrete dynamical systems. J Appl Anal Comput 2015;5(4):781–92.MathSciNetGoogle Scholar
  16. 16.
    Nagumo M. Über die differentialgleichung y = f(x, y, y ). Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki 1937;19:861–6.zbMATHGoogle Scholar
  17. 17.
    Nieto JJ. Nonlinear second-order periodic boundary value problems. J Math Anal Appl 1988;130(1):22–9.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ortega R, Tarallo M. Almost periodic upper and lower solutions. J Differ Equ 2003;193(2):343–58.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Picard E. Sur l’application des mé,thodes d’approximations successives à l’étude de certaines équations différentielles ordinaires. Journal de Mathématiques Pures et Appliquées 1893;9:217–72.zbMATHGoogle Scholar
  20. 20.
    Schmitt K. A note on periodic solutions of second order ordinary differential equations. SIAM J Appl Math 1971;21:491–4.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wang C, Li Y. Affine-periodic solutions for nonlinear dynamic equations on time scales. Adv Diff Equ 2015;286(16):2015.MathSciNetGoogle Scholar
  22. 22.
    Wang C, Yang X, Li Y. Affine-periodic solutions for nonlinear differential equations. Rocky Mountain J Math 2016;46(5):1717–37.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wang H, Yang X, Li Y. Rotating-symmetric solutions for nonlinear systems with symmetry. Acta Math Appl Sin Engl Ser 2015;31(2):307–12.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wang H, Yang X, Li Y, Xiaoyue LI. LaSalle type stationary oscillation theorems for affine-periodic systems. Discrete Contin Dyn Syst Ser B 2017;22(7):2907–21.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mang M, Cabada A, Nieto JJ. Monotone method for nonlinear second order periodic boundary value problems with C,arathéodory functions. Ann Polon Math 1993; 58(3):221–35.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Xu F, Li Y, Gao Y, Xu X. 2017. The well-posedness of fractional systems with affine-periodic boundary conditions. Differential Equations and Dynamical Systems, pp 1–17.Google Scholar
  27. 27.
    Zhang Y, Yang X, Li Y. Affine-periodic solutions for dissipative systems. Abstr Appl Anal 2013;157140:4.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsJilin UniversityChangchunPeople’s Republic of China
  2. 2.Center for Mathematics and Interdisciplinary SciencesNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations