Advertisement

Approximate Controllability for Navier–Stokes Equations in 3D Rectangles Under Lions Boundary Conditions

  • Duy Phan
  • Sérgio S. Rodrigues
Article

Abstract

The 3D Navier–Stokes system, under Lions boundary conditions, is proven to be approximately controllable provided a suitable saturating set does exist. An explicit saturating set for 3D rectangles is given.

Keywords

Navier–Stokes equations Approximate controllability Saturating set 

Mathematics Subject Classification (2010)

93B05 35Q30 93C20 

Notes

Acknowledgements

The authors acknowledge partial support from the Austrian Science Fund (FWF): P 26034-N25. D. Phan also acknowledges partial support from the foundation of Tampere University of Technology, and thanks RICAM-ÖAW, Linz, where most of the work has been done, for the provided support and hospitality. The authors are also grateful to the anonymous referee for their constructive comments and suggestions, which have helped the authors to improve the exposition and the presentation of the results in the paper.

References

  1. 1.
    Agrachev AA. Some open problems. arXiv:1304.2590v2 [math.OC]. 2013.
  2. 2.
    Agrachev AA, Kuksin S, Sarychev AV, Shirikyan A. On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations. Ann Inst H Poincaré, Probab Statist 2007;43(4):399–415.  https://doi.org/10.1016/j.anihpb.2006.06.001.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Agrachev AA, Sarychev AV. Navier–Stokes equations Controllability by means of low modes forcing. J Math Fluid Mech 2005;7(1):108–152.  https://doi.org/10.1007/s00021-004-0110-1.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Agrachev AA, Sarychev AV. Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Commun Math Phys 2006;265(3):673–697.  https://doi.org/10.1007/s00220-006-0002-8.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Agrachev AA, Sarychev AV. Solid controllability in fluid dynamics. Instability in Models Connected with Fluid Flow I of International Mathematical Series volume 6 (ch. 1), pp. 1–35. Berlin: Springer; 2008.  https://doi.org/10.1007/978-0-387-75217-4_1.
  6. 6.
    Aris R. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. New York: Dover; 1989. Reprint of the Prentice-Hall 1962 edition http://store.doverpublications.com/0486661105.html.MATHGoogle Scholar
  7. 7.
    Chemetov NV, Cipriano F, Gavrilyuk S. Shallow water model for lakes with friction and penetration. Math Meth Appl Sci 2010;33(6):687–703.  https://doi.org/10.1002/mma.1185.MathSciNetMATHGoogle Scholar
  8. 8.
    Diaz JI. 1996. Obstruction and some approximate controllability results for the Burgers equation and related problems. 174:63–76.Google Scholar
  9. 9.
    Weinan E, Mattingly JC. Ergodicity for the Navier–Stokes equation with degenerate random forcing: Finite dimensional approximation. Comm Pure Appl Math 2001;54(11):1386–1402.  https://doi.org/10.1002/cpa.10007.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fernández-Cara E, Guerrero S. Null controllability of the Burgers system with distributed controls. Systems Control Lett 2007;56(5):366–372.  https://doi.org/10.1016/j.sysconle.2006.10.022.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hairer M, Mattingly JC. Ergodicity of the 2D, Navier–Stokes equations with degenerate stochastic forcing. Ann Math 2006;164(3):993–1032.  https://doi.org/10.4007/annals.2006.164.993.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ilyin AA, Titi ES. Sharp estimates for the number of degrees of freedom for the damped-driven 2-D, Navier–Stokes equations. J Nonlinear Sci 2006;16(3):233–253.  https://doi.org/10.1007/s00332-005-0720-7.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kelliher JP. NAvier–Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J Math Anal 2006;38(1):210–232.  https://doi.org/10.1137/040612336.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kuksin S, Nersesyan V, Shirikyan A. 2018. Exponential mixing for a class of dissipative PDEs with bounded degenerate noise arXiv:1802.03250v2 [math.AP].
  15. 15.
    Lions J-L. Quelques méthodes de résolution des problèmes aux Limites Non linéaires. Paris: Dunod et Gauthier–Villars; 1969.MATHGoogle Scholar
  16. 16.
    Nersesyan V. Approximate controllability of Lagrangian trajectories of the 3D Navier–Stokes system by a finite-dimensional force. Nonlinearity 2015;28(3):825–848.  https://doi.org/10.1088/0951-7715/28/3/825.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nersisyan H. Controllability of 3D incompressible Euler equations by a finite-dimensional external force. ESAIM Control Optim Calc Var 2010;16(3):677–694.  https://doi.org/10.1051/cocv/2009017.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Nersisyan H. Controllability of the 3D compressible Euler system. Comm Partial Differential Equations 2011;36(9):1544–1564.  https://doi.org/10.1080/03605302.2011.596605.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Phan D. Stabilization to Trajectories and Approximate Controllability for the Equations of Fluid Mechanics PhD Thesis. Austria: J. Kepler Universität Linz; 2016. http://epub.jku.at/obvulihs/content/titleinfo/1592928.Google Scholar
  20. 20.
    Phan D, Rodrigues SS. 2015. Approximate controllability for equations of fluid mechanics with a few body controls. In: Proceedings of the European Control Conference (ECC), Linz, Austria, pp 2682–2687.  https://doi.org/10.1109/ECC.2015.7330943.
  21. 21.
    Phan D, Rodrigues SS. Gevrey regularity for Navier–Stokes equations under Lions boundary conditions. J Funct Anal 2017; 272 (7): 2865–2898.  https://doi.org/10.1016/j.jfa.2017.01.014.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rodrigues SS. 2005. Controllability issues for the Navier–Stokes equation on a Rectangle. In: Proceedings 44th IEEE CDC-ECC’05, Seville, Spain, pp 2083–2085.  https://doi.org/10.1109/CDC.2005.1582468.
  23. 23.
    Rodrigues SS. NAvier–Stokes equation on the Rectangle: Controllability by means of low modes forcing. J Dyn Control Syst 2006;12(4):517–562.  https://doi.org/10.1007/s10883-006-0004-z.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rodrigues SS. 2007. Controllability of nonlinear pdes on compact Riemannian manifolds. In: Proceedings WMCTF’07; Lisbon, Portugal, pp 462–493. http://people.ricam.oeaw.ac.at/s.rodrigues/.
  25. 25.
    Rodrigues SS. Methods of Geometric Control Theory in Problems of Mathematical Physics. PhD Thesis. Portugal: Universidade de Aveiro; 2008. http://hdl.handle.net/10773/2931.Google Scholar
  26. 26.
    Romito M. Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise. J Stat Phys 2004;114(1/2): 155–177.  https://doi.org/10.1023/B:JOSS.0000003108.92097.5c.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sarychev A. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Math Control Relat Fields 2012;2(3):247–270.  https://doi.org/10.3934/mcrf.2012.2.247.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Shirikyan A. Approximate controllability of three-dimensional Navier–Stokes equations. Comm Math Phys 2006; 266 (1): 123–151.  https://doi.org/10.1007/s00220-006-0007-3.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Shirikyan A. Controllability of nonlinear PDEs: Agrachev–Sarychev approach. journées Équations aux dérivées Partielles Évian, 4 juin–8 juin Exposé 2007;IV:1–11. https://eudml.org/doc/10631.Google Scholar
  30. 30.
    Shirikyan A. Exact controllability in projections for three-dimensional Navier–Stokes equations. Ann Inst H Poincaré, Anal Non Linéaire 2007;24(4):521–537.  https://doi.org/10.1016/j.anihpc.2006.04.002.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Shirikyan A. EUler equations are not exactly controllable by a finite-dimensional external force. Physica D 2008;237(10–11):1317–1323.  https://doi.org/10.1016/j.physd.2008.03.021.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shirikyan A. Global exponential stabilisation for the burgers equation with localised control. J Éc polytech Math 2017;4:613–632.  https://doi.org/10.5802/jep.53.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Temam R. Navier–Stokes Equations and Nonlinear Functional Analysis. Number 66 in CBMS-NSF Regional Conf. Ser. Appl. Math., 2nd edn. Philadelphia: SIAM; 1995.  https://doi.org/10.1137/1.9781611970050.Google Scholar
  34. 34.
    Xiao Y, Xin Z. On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Comm Pure Appl Math 2007;60(7):1027–1055.  https://doi.org/10.1002/cpa.20187.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Xiao Y, Xin Z. On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions. Commun Math Stat 2013;1(3):259–279.  https://doi.org/10.1007/s40304-013-0014-6.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics LaboratoryTampere University of TechnologyTampereFinland
  2. 2.Johann Radon Institute for Computational and Applied MathematicsÖAWLinzAustria

Personalised recommendations