Advertisement

Journal of Dynamical and Control Systems

, Volume 25, Issue 1, pp 109–157 | Cite as

Privileged Coordinates and Nilpotent Approximation of Carnot Manifolds, I. General Results

  • Woocheol Choi
  • Raphaël Ponge
Article
  • 49 Downloads

Abstract

In this paper, we attempt to give a systematic account on privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold, it is meant a manifold with a distinguished filtration of subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. This paper lies down the background for its sequel (Choi and Ponge 2017) by clarifying a few points on privileged coordinates and the nilpotent approximation of Carnot manifolds. In particular, we give a description of all the systems of privileged coordinates at a given point. We also give an algebraic characterization of all nilpotent groups that appear as the nilpotent approximation at a given point. In fact, given a nilpotent group \(G\) satisfying this algebraic characterization, we exhibit all the changes of variables that transform a given system of privileged coordinates into another system of privileged coordinates in which the nilpotent approximation is given by \(G\).

Keywords

Carnot manifolds Privileged coordinates Nilpotent approximation 

Mathematics Subject Classification (2010)

53C17 43A85 22E25 

Notes

Acknowledgements

The authors wish to thank Andrei Agrachev, Davide Barilari, Enrico Le Donne, and Frédéric Jean for useful discussions related to the subject matter of this paper. They also thank an anonymous referee whose insightful comments help improving the presentation of the paper. In addition, they would like to thank Henri Poincaré Institute (Paris, France), McGill University (Montréal, Canada) and University of California at Berkeley (Berkeley, USA) for their hospitality during the preparation of this paper.

References

  1. 1.
    Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and sub-Riemannian geometry. To appear, http://webusers.imj-prg.fr/~davide.barilari/Notes.php.
  2. 2.
    Agrachev A, Marigo A. Nonholonomic tangent spaces: intrinsic construction and rigid dimensions. Electron Res Announc Amer Math Soc 2003;9:111–120.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Agrachev A, Marigo A. Rigid Carnot algebras: a classification. J Dyn Control Syst 2005;11:449–494.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agrachev AA, Sarychev AV. Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems. Dokl Akad Nauk SSSR 1987;285:777–781. (English transl.: Soviet Math. Dokl. 36 (1988), 104–108.)Google Scholar
  5. 5.
    Apostolov V, Calderbank DMJ, Gauduchon P, Legendre E. Toric contact geometry in arbitrary codimension. arXiv:1708.04942, p. 22. To appear in Int Math Res Notices.
  6. 6.
    Apostolov V, Calderbank DMJ, Gauduchon P, Legendre E. Levi-Kähler reduction of CR structures, products of spheres, and toric geometry. arXiv:1708.05253, p. 39.
  7. 7.
    Banyaga A. On essential conformal groups and a conformal invariant. J Geom 2000; 68:10–15.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beals R, Greiner P. Calculus on Heisenberg manifolds. Annals of mathematics studies, Vol. 119. Princeton: Princeton University Press; 1988.Google Scholar
  9. 9.
    Bellac̈he A. The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, pp. 1–78, Progr. Math., Vol. 144. Birkhäuser: Basel; 1996.Google Scholar
  10. 10.
    Bianchini RM, Stefani C. Graded approximations and controllability along a trajectory. SIAM J Control Optim 1990;28:903–924.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Biquard O. 1999. Quaternionic contact structures. Quaternionic structures in mathematics and physics, Univ. Studi Roma La Sapienza, Rome.Google Scholar
  12. 12.
    Biquard O. 2000. Métriques d’Einstein asymptotiquement symétriques, Vol. 265 of Astérisque, p. 115.Google Scholar
  13. 13.
    Bloch AM. Nonholonomic mechanics and control. Interdisciplinary applied mathematics, Vol. 24. New York: Springer; 2003.Google Scholar
  14. 14.
    Bonfiglioli A, Lanconelli E, Uguzzoni F. Stratified Lie groups and potential theory for their sub-Laplacians. Springer monographs in mathematics. Berlin: Springer; 2007.zbMATHGoogle Scholar
  15. 15.
    Bramanti M. An invitation to hypoelliptic operators and Hörmander’s vector fields. SpringerBriefs in mathematics. New York: Springer International Publishing; 2014.CrossRefGoogle Scholar
  16. 16.
    Bryant R. Conformal geometry and 3-plane fields on 6-manifolds. Developments of Cartan geometry and related mathematical problems. RIMS symposium proceedings, Vol. 1502, pp. 1–15; 2006.Google Scholar
  17. 17.
    Calin O, Chang D.-C. Sub-riemannian geometry. General theory and examples encyclopedia of mathematics and its applications, Vol. 126. Cambridge: Cambridge University Press; 2009.CrossRefGoogle Scholar
  18. 18.
    Cartan E. Les systèmes de Pfaff à cinq variables et les équations aux derivées partielles du second ordre. Ann Sci École Norm Sup 1910;27:263–355.CrossRefGoogle Scholar
  19. 19.
    Čap A, Slovák J. Parabolic geometries I: background and general theory. Mathematical surveys and mo- nographs, Vol. 154. Providence: American Mathematical Society; 2009. p. 628, ISBN: 0-8218-2681-6.Google Scholar
  20. 20.
    Choi W, Ponge R. Privileged coordinates and nilpotent approximation for Carnot manifolds, II. Carnot coordinates. arXiv:1703.05494v2 (v2: September 2017), p. 36.
  21. 21.
    Choi W, Ponge R. Tangent maps and tangent groupoid for Carnot manifolds. arXiv:1510.05851v2 (v2: September 2017), p. 40.
  22. 22.
    Choi W, Ponge R. A pseudodifferential calculus on Carnot manifolds. In preparation.Google Scholar
  23. 23.
    Connes A. Noncommutative geometry. San Diego: Academic; 1994.zbMATHGoogle Scholar
  24. 24.
    Connes A, Moscovici H. The local index formula in noncommutative geometry. Geom Funct Anal 1995;5:174–243.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Corwin L, Greenleaf F. Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge studies in advanced mathematics, Vol. 18. Cambridge: Cambridge University Press; 1990.Google Scholar
  26. 26.
    Cummins T. A pseudodifferential calculus associated with 3-step nilpotent groups. Comm Partial Differ Equ 1989;14(1):129–171.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Eliashberg Y, Thurston W. Confoliations. University lecture series, Vol. 13. Providence: AMS; 1998.Google Scholar
  28. 28.
    Falbel E, Jean F. Measures of transverse paths in sub-Riemannian geometry. J Anal Math 2003;91:231–246.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fischer V, Ruzhansky M. 2016. Quantization on nilpotent Lie groups. Progress in Mathematics, 314. Birkhäuser/Springer.Google Scholar
  30. 30.
    Folland GB. Lipschitz classes and Poisson integrals on stratified groups. Stud Math 1979;66:37–55.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Folland G, Stein E. Estimates for the \(\overline {\partial }_{b}\)-complex and analysis on the Heisenberg group. Comm Pure Appl Math 1974;27:429–522.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Folland G, Stein E. Hardy spaces on homogeneous groups. Mathematical notes, 28. Princeton: Princeton University Press; 1982.zbMATHGoogle Scholar
  33. 33.
    Fox DJF. Contact projective structures. Indiana Univ Math J 2005;54:1547–1598.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Fox DJF. Contact path geometries. arXiv:math.DG/0508343, p. 36.
  35. 35.
    Gershkovich V, Vershik A. Nonholonomic manifolds and nilpotent analysis. J Geom Phys 1988;5:407–452.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Goodman N. Nilpotent Lie groups: structure and applications to analysis. Lecture notes in mathematics, Vol. 562. Berlin: Springer; 1976.CrossRefGoogle Scholar
  37. 37.
    Gromov M. Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, pp. 85–323, Progr. Math., Vol. 144. Birkhäuser: Basel; 1996.Google Scholar
  38. 38.
    Hermes H. Nilpotent and high-order approximations of vector field systems. SIAM Rev 1991;33:238–264.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hörmander L. Hypoelliptic second order differential equations. Acta Math 1967; 119:147–171.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Jean F. The car with N trailers: characterization of the singular configurations. ESAIM: Cont Opt Calc Var 1996;1: 241–266.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Jean F. Control of nonholonomic systems: from sub-Riemannian geometry to motion planning. Springer briefs in mathematics. New York: Springer International Publishing; 2014.Google Scholar
  42. 42.
    Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Am Math Soc 1980;258:147–153.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Margulis G, Mostow GD. Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. J Anal Math 2000;80:299–317.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Melin A. 1982. Lie filtrations and pseudo-differential operators. Preprint.Google Scholar
  45. 45.
    Métivier G. Function spectrale et valeurs propres d’une classe d’opérateurs non elliptiques. Comm Partial Differ Equ 1976;47:467–510.CrossRefGoogle Scholar
  46. 46.
    Métivier G. Hypoellipticité analytique sur des groupes nilpotents de rang 2. Duke Math J 1980;47:195–213.MathSciNetCrossRefGoogle Scholar
  47. 47.
    Mitchell J. On Carnot-Carathéodory metrics. J Differ Geom 1985;21:35–45.CrossRefGoogle Scholar
  48. 48.
    Moerdijk I, Mrčun J. Introduction to foliations and Lie groupoids. Cambridge studies in advanced mathematics, Vol. 91. Cambridge: Cambridge University Press; 2003.CrossRefGoogle Scholar
  49. 49.
    Montgomery R. A tour of subriemannian geometries, their geodesics and applications. Mathematical surveys and monographs, Vol. 91. Providence: American Mathematical Society; 2002.Google Scholar
  50. 50.
    Nagel A, Stein EM, Wainger S. Metrics defined by vector fields I: basic properties. Acta Math 1985;155:103–147.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Pansu P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann Math (2) 1989;129:1–60.MathSciNetCrossRefGoogle Scholar
  52. 52.
    Perko L. Differential equations and dynamical systems. New York: Springer; 2001.CrossRefGoogle Scholar
  53. 53.
    Ponge R. The tangent groupoid of a Heisenberg manifold. Pacific J Math 2006; 227(1):151–175.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Rifford L. Sub-Riemannian geometry and optimal transport. Springer briefs in mathematics. New York: Springer International Publishing; 2014.CrossRefGoogle Scholar
  55. 55.
    Rockland C. Intrinsic nilpotent approximation. Acta Appl Math 1987;8(3):213–270.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Rothschild L, Stein E. Hypoelliptic differential operators and nilpotent groups. Acta Math 1976;137(3-4):247–320.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Stefani G. On local controllability of the scalar input control systems. Analysis and control of nonlinear systems. Amsterdam: North-Holland; 1988, pp. 213–220.Google Scholar
  58. 58.
    Tanaka N. On differential systems, graded Lie algebras and pseudogroups. J Math Kyoto Univ 1970;10:1–82.MathSciNetCrossRefGoogle Scholar
  59. 59.
    van Erp E. Contact structures of arbitrary codimension and idempotents in the Heisenberg algebra. arXiv:1001.5426, p. 13.
  60. 60.
    Vergne M. Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes. Bull Soc Math France. 1970;98:81–116.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Vershik A, Gershkovich V. A bundle of nilpotent Lie algebras over a nonholonomic manifold. J Soviet Math 1992;59:1040–1053.MathSciNetCrossRefGoogle Scholar
  62. 62.
    Weinstein A. Fat bundles and symplectic manifolds. Adv Math 1980;37:239–250.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics EducationIncheon National UniversityIncheonSouth Korea
  2. 2.Department of Mathematical SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations