Advertisement

Journal of Dynamical and Control Systems

, Volume 25, Issue 1, pp 1–16 | Cite as

Controlled Motion of a Spherical Robot with Feedback. II

  • Tatyana B. Ivanova
  • Alexander A. Kilin
  • Elena N. PivovarovaEmail author
Article
  • 148 Downloads

Abstract

In this paper, we develop a model of a controlled spherical robot of combined type moving by displacing the center of mass and by changing the internal gyrostatic momentum, with a feedback that stabilizes given partial solutions for a free system at the final stage of motion. According to the proposed approach, feedback depends on phase variables (current position, velocities) and does not depend on the specific type of trajectory. We present integrals of motion and partial solutions, analyze their stability, and give examples of computer simulations of motion with feedback that demonstrate the efficiency of the proposed model.

Keywords

Spherical robot Nonholonomic constraint Control Feedback 

Mathematics Subject Classification (2010)

70F25 70Q05 93D15 

Notes

Acknowledgements

The authors extend their gratitude to A. V. Borisov and I. S. Mamaev for fruitful discussions of the results obtained.

This work is supported by the Russian Science Foundation under grant 14-50-00005 and was performed at the Steklov Mathematical Institute of the Russian Academy of Sciences.

References

  1. 1.
    Bizyaev IA, Borisov AV, Mamaev IS. The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. Regul Chaotic Dyn. 2014;19(2):198–213.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bloch AM, Krishnaprasad PS, Marsden JE, Sanchez de Alvarez G. Stabilization of rigid body dynamics by internal and external torques. Automatica. 1992; 28:745–56.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bloch AM, Leonard NE, Marsden JE. Stabilization of mechanical systems using controlled lagrangians. Proceedings of the 36th IEEE Conference on Decision and Control; 1997. p. 2356–61.Google Scholar
  4. 4.
    Bloch AM, Reyhanoglu M, McClamroch NH. Control and stabilization of nonholonomic dynamic systems. IEEE Trans Autom Control. 1992;37:1746–57.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borisov AV, Kilin AA, Mamaev IS. How to control Chaplygin’s sphere using rotors. Regul Chaotic Dyn. 2012;17(3–4):258–72.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borisov AV, Kilin AA, Mamaev IS. How to control the Chaplygin ball using rotors. II. Regul Chaotic Dyn. 2013;18(1–2):144–158.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Borisov AV, Mamaev IS. Two non-holonomic integrable problems tracing back to Chaplygin. Regul Chaotic Dyn. 2012;17(2):191–8.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chowdhury AR, Vibhute A, Soh GS, Foong SH, Wood KL. Implementing caterpillar inspired roll control of a spherical robot. Proc IEEE Int Conf Robot Autom. 2017;2017:4167–74.Google Scholar
  9. 9.
    Ivanova TB, Pivovarova EN. Dynamics and control of a spherical robot with an Axisymmetric pendulum actuator. Rus J Nonlin Dyn. 2013;9(3):507–20. (Russian).Google Scholar
  10. 10.
    Ivanova TB, Pivovarova EN. Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev How To Control the Chaplygin Ball Using Rotors: 2. Regul Chaotic Dyn. 2014;19(1):140–43.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ivanova TB, Kilin AA, Pivovarova EN. 2017. Controlled motion of a spherical robot with feedback. I J Dyn Control Syst.  https://doi.org/10.1007/s10883-017-9387-2.
  12. 12.
    Karavaev YL, Kilin AA. Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform nonholonomic theory and experiments. Proc Steklov Inst Math. 2016;295(1):158–67.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Karavaev YL, Kilin AA. The dynamics and control of a spherical robot with an internal omniwheel platform. Regul Chaotic Dyn. 2015;20(2):134–52.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kayacan E, Bayraktaroglu ZY, Modeling SW. Control of a spherical rolling robot a decoupled dynamics approach. Robotica. 2012;30(4):671–80.CrossRefGoogle Scholar
  15. 15.
    Kayacan E, Kayacan E, Ramon H, Saeys W. Adaptive Neuro-Fuzzy control of a spherical rolling robot using sliding mode control theory-based online learning algorithm. IEEE Trans Cybern. 2013;43(1):170–9.CrossRefGoogle Scholar
  16. 16.
    Kilin AA, Karavaev YL. Experimental research of dynamic of spherical robot of combined type. Rus J Nonlin Dyn. 2015;11(4):721–34. (Russian).zbMATHGoogle Scholar
  17. 17.
    Kilin AA, Pivovarova EN, Ivanova TB. Spherical robot of combined type: dynamics and control. Regul Chaotic Dyn. 2015;20(6):716–28.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Korn GA, Korn TM. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. New York: Dover Publications; 2000.zbMATHGoogle Scholar
  19. 19.
    Kulikov LY. Algebra and number theory. Moscow: Vysshaya Shkola; 1979. (Russian).zbMATHGoogle Scholar
  20. 20.
    Pivovarova EN, Ivanova TB. Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum. Vestnik Udmurtskogo Universiteta Matematika Mekhanika Komp’yuternye Nauki. 2012;4:146–55. (Russian).CrossRefGoogle Scholar
  21. 21.
    Roozegar M, Mahjoob MJ. Modelling and control of a non-holonomic pendulum-driven spherical robot moving on an inclined plane: simulation and experimental results. IET Control Theory Appl. 2017;11(4):541–9.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Tatyana B. Ivanova
    • 1
  • Alexander A. Kilin
    • 1
  • Elena N. Pivovarova
    • 1
    Email author
  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations