Advertisement

As simple as possible, but not simpler: estimating the effective arterial elastance at bedside

  • Denis ChemlaEmail author
  • Jean-Louis Teboul
  • Mathieu Jozwiak
Letter to the Editor
  • 36 Downloads

We have read with interest the recent experimental study performed by Monge Garcia et al. in twelve anesthetized and mechanically ventilated adult pigs [1]. In their conclusion, the authors recommend the clinical use of the mean arterial pressure over stroke volume ratio (MAP/SV) as a robust and preferable estimate of the effective arterial elastance (Ea = ESP/SV, where ESP is the left ventricular end-systolic pressure). Besides the originality of the study results obtained under various experimental conditions, the current article [1] may also be viewed as supporting the use of the MAP/SV ratio as an estimate of Ea in patients with septic shock [2]. Improving the estimation of Ea at the bedside may be an important issue. Indeed, Ea incorporates the main components of arterial load, and the ratio of Ea to left ventricular end-systolic elastance allows quantifying the mechanical coupling between the left ventricle and its load [3, 4, 5]. However, we feel that the oversimplification of...

Notes

References

  1. 1.
    Monge Garcia MI, Jian Z, Settels JJ, Hatib F, Cecconi M, Pinsky MR. Reliability of effective arterial elastance using peripheral arterial pressure as surrogate for left ventricular end-systolic pressure. J Clin Monit Comput. 2018.  https://doi.org/10.1007/s10877-018-0236-y.Google Scholar
  2. 2.
    Morelli A, Singer M, Ranieri VM, D’Egidio A, Mascia L, Orecchioni A, Piscioneri F, Guarracino F, Greco E, Peruzzi M, Biondi-Zoccai G, Frati G, Romano SM. Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study. Intensive Care Med. 2016;42:1528–34.CrossRefGoogle Scholar
  3. 3.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773–80.Google Scholar
  4. 4.
    Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56:586–95.CrossRefGoogle Scholar
  5. 5.
    Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol. 2008;105:1342–51.CrossRefGoogle Scholar
  6. 6.
    Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86:513–21.CrossRefGoogle Scholar
  7. 7.
    Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285:H614–20.CrossRefGoogle Scholar
  8. 8.
    Colin P, Slama M, Vahanian A, Lecarpentier Y, Motté G, Chemla D. Hemodynamic correlates of effective arterial elastance in mitral stenosis before and after balloon valvotomy. J Appl Physiol. 1997;83:1083–9.CrossRefGoogle Scholar
  9. 9.
    Jozwiak M, Millasseau S, Richard C, Monnet X, Mercado P, Dépret F, Alphonsine J-E, teboul JL, Chemla D. Validation and critical evaluation of the effective arterial elastance in critically-ill patients. Crit Care med. 2019.  https://doi.org/10.1097/CCM.0000000000003645.Google Scholar
  10. 10.
    Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, Bekaert S, De Backer G, Gillebert T, Verdonck P, Van Bortel L. Asklepios investigators. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension. 2009;54:414–20.CrossRefGoogle Scholar
  11. 11.
    Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122–33.CrossRefGoogle Scholar
  12. 12.
    Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care. 2013;17:213.CrossRefGoogle Scholar
  13. 13.
    Monge García MI, Saludes O, Cecconi M. Understanding arterial load. Intensive Care Med. 2016;42:1625–7.CrossRefGoogle Scholar
  14. 14.
    Lacolley P, Regnault V, Segers P, Laurent S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev. 2017;97:1555–617.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Denis Chemla
    • 1
    • 2
    Email author
  • Jean-Louis Teboul
    • 2
    • 3
  • Mathieu Jozwiak
    • 4
  1. 1.Service de Physiologie-Explorations Fonctionnelles, Faculté de médecineHôpitaux Universitaires Paris SudLe Kremlin BicêtreFrance
  2. 2.INSERM UMR_S 999, Hôpital Marie LannelongueLe Plessis RobinsonFrance
  3. 3.Service de Médecine Intensive-Réanimation, Faculté de médecineHôpitaux Universitaires Paris SudLe Kremlin BicêtreFrance
  4. 4.Service de Médecine Intensive-RéanimationHôpitaux universitaires Paris Centre-Hôpital CochinParisFrance

Personalised recommendations