Skip to main content

Advertisement

Log in

Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Background

Prior methods evaluating the changes in cerebral arterial blood volume (∆CaBV) assumed that brain blood transport distal to big cerebral arteries can be approximated with a non-pulsatile flow (CFF) model. In this study, a modified ∆CaBV calculation that accounts for pulsatile blood flow forward (PFF) from large cerebral arteries to resistive arterioles was investigated. The aim was to assess cerebral hemodynamic indices estimated by both CFF and PFF models while changing arterial blood carbon dioxide concentration (EtCO2) in healthy volunteers.

Materials and methods

Continuous recordings of non-invasive arterial blood pressure (ABP), transcranial Doppler blood flow velocity (CBFVa), and EtCO2 were performed in 53 young volunteers at baseline and during both hypo- and hypercapnia. The time constant of the cerebral arterial bed (τ) and critical closing pressure (CrCP) were estimated using mathematical transformations of the pulse waveforms of ABP and CBFVa, and with both pulsatile and non-pulsatile models of ∆CaBV estimation. Results are presented as median values ± interquartile range.

Results

Both CrCP and τ gave significantly lower values with the PFF model when compared with the CFF model (p ≪ 0.001 for both). In comparison to normocapnia, both CrCP and τ determined with the PFF model increased during hypocapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 14.36 ± 14.47, p = 0.00006; τPFF (ms): 47.4 ± 53.9 vs. 72.8 ± 45.7, p = 0.002] and decreased during hypercapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 2.36 ± 7.05, p = 0.0001; τPFF (ms): 47.4 ± 53.9 vs. 29.0 ± 31.3, p = 0.0003]. When the CFF model was applied, no changes were found for CrCP during hypercapnia or in τ during hypocapnia.

Conclusion

Our results suggest that the pulsatile flow forward model better reflects changes in CrCP and in τ induced by controlled alterations in EtCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avezaat CJJ, van Eijndhoven JHM. The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev. 1986;9:113–20.

    Article  CAS  PubMed  Google Scholar 

  2. Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.

    Article  PubMed  Google Scholar 

  3. Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer M-E, Deramond H, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29:1208–15.

    Article  PubMed  Google Scholar 

  4. Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30:647–59.

    Article  CAS  PubMed  Google Scholar 

  5. Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2011;21:121–5.

    Article  PubMed  Google Scholar 

  6. Nasr N, Czosnyka M, Pavy-Le Traon A, Custaud M-A, Liu X, Varsos GV, et al. Baroreflex and cerebral autoregulation are inversely correlated. Circ J. 2014;78:2460–7.

    Article  PubMed  Google Scholar 

  7. Czosnyka M, Richards HK, Reinhard M, Steiner L, Budohoski K, Smielewski P, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34:17–24.

    Article  CAS  PubMed  Google Scholar 

  8. Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38:1129–37.

    Article  PubMed  Google Scholar 

  9. Kasprowicz M, Diedler J, Reinhard M, Carrera E, Smielewski P, Budohoski KP, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.

    Article  PubMed  Google Scholar 

  10. Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2013;33:235–43.

    Article  PubMed  Google Scholar 

  11. Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2012;16:213–8.

    Article  PubMed  Google Scholar 

  12. Carrera E, Kim D-J, Castellani G, Zweifel C, Smielewski P, Pickard JD, et al. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2011;18:711–8.

    Article  CAS  PubMed  Google Scholar 

  13. Varsos GV, Budohoski KP, Czosnyka M, Kolias AG, Nasr N, Donnelly J, et al. Cerebral vasospasm affects arterial critical closing pressure. J Cereb Blood Flow Metab. 2015;35:285–91.

    Article  PubMed  Google Scholar 

  14. Varsos GV, Kolias AG, Smielewski P, Brady KM, Varsos VG, Hutchinson PJ, et al. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J Neurosurg. 2015;123:638–48.

    Article  PubMed  Google Scholar 

  15. Carrera E, Kim D-J, Castellani G, Zweifel C, Czosnyka Z, Kasprowicz M, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.

    Article  PubMed  Google Scholar 

  16. Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54:483–91.

    Article  PubMed  Google Scholar 

  17. Czosnyka M, Smielewski P, Kirkpatrick P, Piechnik S, Laing R, Pickard JD. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.

    CAS  PubMed  Google Scholar 

  18. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138:531–42.

    Article  CAS  PubMed  Google Scholar 

  19. Poulin MJ, Robbins PA. Indexes of flow and cross-sectional area of the middle cerebral artery using doppler ultrasound during hypoxia and hypercapnia in humans. Stroke. 1996;27:2244–50.

    Article  CAS  PubMed  Google Scholar 

  20. Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhäupl KM. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. Am J Neuroradiol. 1997;18:1929–34.

    CAS  PubMed  Google Scholar 

  21. Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Møller S. Arterial compliance in patients with cirrhosis: stroke volume-pulse pressure ratio as simplified index. Am J Physiol Gastrointest Liver Physiol. 2001;280:G584–94.

    Article  CAS  PubMed  Google Scholar 

  22. Panerai RB, Salinet ASM, Brodie FG, Robinson TG. The influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:467–82.

    Article  CAS  PubMed  Google Scholar 

  23. Altman BjM. DG. Statistics notes: calculating correlation coefficients with repeated observations: part 1-correlation within subjects. BMJ. 1995;310:446.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: Part 2-correlation between subjects. BMJ. 1995;310:633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care. 2014;20:142–57.

    Article  PubMed  Google Scholar 

  26. Brothers RM, Zhang R. CrossTalk opposing view: the middle cerebral artery diameter does not change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4077–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoiland RL, Ainslie PN. CrossTalk proposal: The middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol. 2016;594:4073–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Djurberg HG, Seed RF, Price Evans DA, Brohi FA, Pyper DL, Tjan GT, et al. Lack of effect of CO2 on cerebral arterial diameter in man. J Clin Anesth. 1998;10:646–51.

    Article  CAS  PubMed  Google Scholar 

  29. Serrador JM, Picot P, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31:1672–8.

    Article  CAS  PubMed  Google Scholar 

  30. Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol. 2000;21:1207–11.

    CAS  PubMed  Google Scholar 

  31. Verbree J, Bronzwaer A-SGT, Ghariq E, Versluis MJ, Daemen MJAP., van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol. 2014;117:1084–9.

    Article  PubMed  Google Scholar 

  32. Coverdale NS, Lalande S, Perrotta A, Shoemaker JK. Heterogeneous patterns of vasoreactivity in the middle cerebral and internal carotid arteries. Am J Physiol- Hear Circ Physiol. 2015;308:H1030–8.

    Article  CAS  Google Scholar 

  33. Kim S-G, Harel N, Jin T, Kim T, Lee P, Zhao F. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed. 2013;26:949–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Krystian Gruszczyński, Msc. Eng. for assistance with data collection and Tomasz Szczepański, PhD for reviewing medical history and physical examination.

Funding

This research was supported by the National Science Center (Poland) under Grant No. UMO-2013/10/E/ST7/00117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Uryga.

Ethics declarations

Conflict of interest

ICM + Software is licensed by Cambridge Enterprise, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus/. Prof. Czosnyka has a financial interest in a fraction of the licensing fee for ICM + software. The other authors declare that they have no conflicts of interest.

Informed consent

The protocol complied with the Declaration of Helsinki of the World Medical Association, and all participants gave written informed consent before participating in the study.

Research involving human and animal rights

The study was approved by the bioethical committee of the Wroclaw Medical University (Permission No. KB-170/2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryga, A., Kasprowicz, M., Calviello, L. et al. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models. J Clin Monit Comput 33, 85–94 (2019). https://doi.org/10.1007/s10877-018-0136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0136-1

Keywords

Navigation