Journal of Clinical Monitoring and Computing

, Volume 33, Issue 1, pp 155–163 | Cite as

Intraoperative feasibility of bulbocavernosus reflex monitoring during untethering surgery in infants and children

  • Takeaki Shinjo
  • Hironobu HayashiEmail author
  • Tsunenori Takatani
  • Eishu Boku
  • Hiroyuki Nakase
  • Masahiko Kawaguchi
Original Research


Bulbocavernosus reflex (BCR) monitoring is used to assess the integrity of urinary and bowel function. In this study, we evaluated the feasibility of BCR monitoring during untethering surgery in infants and children to predict postoperative urinary and bowel dysfunction. The records of 22 patients ranging from 4 days to 10 years old (mean 2.7 ± 3.3 years) were reviewed. Anesthesia was maintained by propofol or sevoflurane/opioid without neuromuscular blockade. BCR waveforms induced by electrical stimulation (20–40 mA, train-of-four pulses with 500 Hz) to the penis or clitoris were recorded from bilateral external anal sphincters. To assess the sensitivity and specificity of BCR monitoring, we investigated the association between a significant continuous decrease in BCR amplitude at the end of surgery and postoperative urinary and bowel dysfunction after surgery. Reproducible baseline BCR waveforms were successfully recorded in 20 of 22 patients (90.9%). A significant continuous decrease in BCR amplitude was observed in 8 patients. The results of intraoperative BCR monitoring included three true-positives, twelve true-negatives, five false-positives, and zero false-negatives. Therefore, the sensitivity and specificity of BCR monitoring used to predict postoperative urinary and bowel dysfunction were 100 and 70.6%, respectively. BCR monitoring during untethering surgery in infants and children under general anesthesia was found to be a feasible method to prevent postoperative urinary and bowel dysfunction.


Bulbocavernosus reflex Monitoring Untethering surgery Urinary and bowel dysfunction Infants Children 


  1. 1.
    Pang D, Wilberger JE Jr. Tethered cord syndrome in adults. J Neurosurg. 1982;57:32–47.CrossRefGoogle Scholar
  2. 2.
    Lee GY, Paradiso G, Tator CH, Gentili F, Massicotte EM, Fehlings MG. Surgical management of tethered cord syndrome in adults: indications, techniques, and long-term outcomes in 60 patients. J Neurosurg Spine. 2006;4:123–31.CrossRefGoogle Scholar
  3. 3.
    Hüttmann S, Krauss J, Collmann H, Sörensen N, Roosen K. Surgical management of tethered spinal cord in adults: report of 54 cases. J Neurosurg. 2001;95(2 Suppl):173–8.Google Scholar
  4. 4.
    Iskandar BJ, Fulmer BB, Hadley MN, Oakes WJ. Congenital tethered spinal cord syndrome in adults. J Neurosurg. 1998;88:958–61.CrossRefGoogle Scholar
  5. 5.
    van Leeuwen R, Notermans NC, Vandertop WP. Surgery in adults with tethered cord syndrome: outcome study with independent clinical review. J Neurosurg. 2001;94(2 Suppl):205–9.Google Scholar
  6. 6.
    Pierre-Kahn A, Zerah M, Renier D, Cinalli G, Sainte-Rose C, Lellouch-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F. Congenital lumbosacral lipomas. Childs Nerv Syst. 1997;13:298–334.CrossRefGoogle Scholar
  7. 7.
    Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29:1611–24.CrossRefGoogle Scholar
  8. 8.
    Kothbauer KF, Novak K. Intraoperative monitoring for tethered cord surgery: an update. Neurosurg Focus. 2004;16:E8.CrossRefGoogle Scholar
  9. 9.
    Skinner SA, Vodušek DB. Intraoperative recording of the bulbocavernosus reflex. J Clin Neurophysiol. 2014;31:313–22.CrossRefGoogle Scholar
  10. 10.
    Clemens JQ. Basic bladder neurophysiology. Urol Clin North Am. 2010;37:487–94.CrossRefGoogle Scholar
  11. 11.
    Hauck EF, Schwefer M, Wittkowski W, Bothe HW. Measurements and mapping of 282,420 nerve fibers in the S1-5 nerve roots. J Neurosurg Spine. 2009;11:255–63.CrossRefGoogle Scholar
  12. 12.
    Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery 1997;40:88–92.Google Scholar
  13. 13.
    Sala F, Krzan MJ, Deletis V. Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst. 2002;18:264–87.CrossRefGoogle Scholar
  14. 14.
    Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26:473–90.CrossRefGoogle Scholar
  15. 15.
    Husain AM, Watkins LR, Muh CR. Tetherd cord surgery. In: Husain AM, editor. A practical approach to neurophysiologic intraoperative monitoring. 2nd ed. New York: Demos Medical Publishing; 2015. pp. 142–55.Google Scholar
  16. 16.
    Tu A, Steinbok P. Occult tethered cord syndrome: a review. Childs Nerv Syst. 2013;29:1635–40.CrossRefGoogle Scholar
  17. 17.
    Vodusek DB, Janko M. The bulbocavernosus reflex. A single motor neuron study. Brain 1990;113:813–20.CrossRefGoogle Scholar
  18. 18.
    Geser F, Wenning GK. Primary autonomic failure. In: Schapira AHV, editor. Neurology and clinical neuroscience. Philadelphia: Mosby Elsevier; 2007. pp. 372–93.Google Scholar
  19. 19.
    Bors E, Blinn KA. Bulbocavernosus reflex. J Urol. 1959;82:128–30.CrossRefGoogle Scholar
  20. 20.
    Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Br J Anaesth. 2007;99:845–54.CrossRefGoogle Scholar
  21. 21.
    Tirel O, Wodey E, Harris R, Bansard JY, Ecoffey C, Senhadji L. The impact of age on bispectral index values and EEG bispectrum during anaesthesia with desflurane and halothane in children. Br J Anaesth. 2006;96:480–5.CrossRefGoogle Scholar
  22. 22.
    Davis PJ, Cladis FP, Motoyama K. Smith’s anesthesia for infants and children. 8th ed. Philadelphia: Elsevier Mosby; 2011.Google Scholar
  23. 23.
    Govindarajan R, Babalola O, Gad-El-Kareem M, Kodali NS, Aronson J, Abadir A. Intraoperative wake-up test in neonatal neurosurgery. Paediatr Anaesth. 2006;16:451–3.CrossRefGoogle Scholar
  24. 24.
    Bannister CF, Brosius KK, Sigl JC, Meyer BJ, Sebel PS. The effect of bispectral index monitoring on anesthetic use and recovery in children anesthetized with sevoflurane in nitrous oxide. Anesth Analg. 2001;92:877–81.CrossRefGoogle Scholar
  25. 25.
    Hayashi H, Kawaguchi M, Yamamoto Y, Inoue S, Koizumi M, Ueda Y, Takakura Y, Furuya H. Evaluation of reliability of post-tetanic motor-evoked potential monitoring during spinal surgery under general anesthesia. Spine (Phila Pa 1976) 2008;33:E994–1000.CrossRefGoogle Scholar
  26. 26.
    Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA. The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg. 2006;103:316–21.CrossRefGoogle Scholar
  27. 27.
    Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, Curry DJ, Dauser RC, Luerssen TG, Jea A. Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr. 2011;7:331–7.CrossRefGoogle Scholar
  28. 28.
    Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol. 2001;112:879–83.CrossRefGoogle Scholar
  29. 29.
    Hernández-Palazón J, Izura V, Fuentes-García D, Piqueras-Pérez C, Doménech-Asensi P, Falcón-Araña L. Comparison of the effects of propofol and sevoflurane combined with remifentanil on transcranial electric motor-evoked and somatosensory-evoked potential monitoring during brainstem surgery. J Neurosurg Anesthesiol. 2015;27:282–8.CrossRefGoogle Scholar
  30. 30.
    Li Y, Meng L, Peng Y, Qiao H, Guo L, Han R, Gelb AW. Effects of dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC Anesthesiol. 2016;16:51.CrossRefGoogle Scholar
  31. 31.
    Skinner S, Chiri CA, Wroblewski J, Transfeldt EE. Enhancement of the bulbocavernosus reflex during intraoperative neurophysiological monitoring through the use of double train stimulation: a pilot study. J Clin Monit Comput. 2007;21:31–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyNara Medical UniversityKashiharaJapan
  2. 2.The Central Clinical LaboratoryNara Medical University HospitalKashiharaJapan
  3. 3.Department of NeurosurgeryNara Medical UniversityKashiharaJapan

Personalised recommendations