Effects of propofol versus sevoflurane on cerebral circulation time in patients undergoing coiling for cerebral artery aneurysm: a prospective randomized crossover study

  • Tomoko Ishibashi
  • Satoshi ToyamaEmail author
  • Kazunori Miki
  • Jun Karakama
  • Yoshikazu Yoshino
  • Satoru Ishibashi
  • Makoto Tomita
  • Shigeru Nemoto
Original Research


Many neuroendovascular treatments are supported by real-time anatomical and visual hemodynamic assessments through digital subtraction angiography (DSA). Here we used DSA in a single-center prospective randomized crossover study to assess the intracranial hemodynamics of patients undergoing coiling for cerebral aneurysm (n = 15) during sevoflurane- and propofol-based anesthesia. Color-coded DSA was used to define time to peak density of contrast medium (TTP) at several intravascular regions of interest (ROIs). Travel time at a particular ROI was defined as the TTP at the selected ROI minus TTP at baseline position on the internal carotid artery (ICA). Travel time at the jugular bulb on the anterior–posterior view was defined as the cerebral circulation time (CCT), which was divided into four segmental circulation times: ICA, middle cerebral artery (MCA), microvessel, and sinus. When bispectral index values were kept between 40 and 60, CCT (median [interquartile range]) was 10.91 (9.65–11.98) s under propofol-based anesthesia compared with 8.78 (8.32–9.45) s under sevoflurane-based anesthesia (P < 0.001). Circulation times for the ICA, MCA, and microvessel segments were longer under propofol-based anesthesia than under sevoflurane-based anesthesia (P < 0.05 for all). Our results suggest that, relative to sevoflurane, propofol decreases overall cerebral perfusion.


Cerebral circulation time Digital subtraction angiography Sevoflurane Propofol 



The authors thank Koshi Makita, MD, PhD (Department of Anesthesiology, Kyoundo Hospital, Tokyo, Japan), for his helpful comments on the planning of the present study and Jun Ichikawa (Siemens Healthcare, Erlangen, Germany) for his technical assistance in operating the Syngo iFlow software.


This work is attributed to the Department of Anesthesiology and Endovascular Surgery, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University. The work was supported in part by the Japan Research Foundation for Clinical Pharmacology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10877_2018_251_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)


  1. 1.
    Sakai N, Yoshimura S, Taki W, Hyodo A, Miyachi S, Nagai Y, Sakai C, Satow T, Terada T, Ezura M, Hyogo T, Matsubara S, Hayashi K, Fujinaka T, Ito Y, Kobayashi S, Komiyama M, Kuwayama N, Matsumaru Y, Matsumoto Y, Murayama Y, Nakahara I, Nemoto S, Satoh K, Sugiu K, Ishii A, Imamura H, Japanese Registry of Neuroendovascular Therapy Investigators. Recent trends in neuroendovascular therapy in Japan: analysis of a nationwide survey—Japanese Registry of Neuroendovascular Therapy (JR-NET) 1 and 2. Neurol Med Chir. 2014;54:1–8.CrossRefGoogle Scholar
  2. 2.
    Fargen KM, Soriano-Baron HE, Rushing JT, Mack W, Mocco J, Albuquerque F, Ducruet AF, Mokin M, Linfante I, Wolfe SQ, Wilson JA, Hirsch JA. A survey of intracranial aneurysm treatment practices among United States physicians. J Neurointerv Surg. 2018;10:44–9.CrossRefGoogle Scholar
  3. 3.
    Alshekhlee A, Mehta S, Edgell RC, Vora N, Feen E, Mohammadi A, Kale SP, Cruz-Flores S. Hospital mortality and complications of electively clipped or coiled unruptured intracranial aneurysm. Stroke. 2010;41:1471–6.CrossRefGoogle Scholar
  4. 4.
    Kaisti KK, Metsähonkala L, Teräs M, Oikonen V, Aalto S, Jääskeläinen S, Hinkka S, Scheinin H. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology. 2002;96:1358–70.CrossRefGoogle Scholar
  5. 5.
    Conti A, Iacopino DG, Fodale V, Micalizzi S, Penna O, Santamaria LB. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth. 2006;97:333–9.CrossRefGoogle Scholar
  6. 6.
    Kaisti KK, Långsjö JW, Aalto S, Oikonen V, Sipilä H, Teräs M, Hinkka S, Metsähonkala L, Scheinin H. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.CrossRefGoogle Scholar
  7. 7.
    Schneiders JJ, Ferns SP, van Ooij P, Siebes M, Nederveen AJ, van den Berg R, van Lieshout J, Jansen G, vanBavel E, Majoie CB. Comparison of phase-contrast MR imaging and endovascular sonography for intracranial blood flow velocity measurements. AJNR Am J Neuroradiol. 2012;33:1786–90.CrossRefGoogle Scholar
  8. 8.
    Holzer A, Winter W, Greher M, Reddy M, Stark J, Donner A, Zimpfer M, Illievich UM. A comparison of propofol and sevoflurane anaesthesia: effects on aortic blood flow velocity and middle cerebral artery blood flow velocity. Anaesthesia. 2003;58:217–22.CrossRefGoogle Scholar
  9. 9.
    Lin CJ, Hung SC, Guo WY, Chang FC, Luo CB, Beilner J, Kowarschik M, Chu WF, Chang CY. Monitoring peri-therapeutic cerebral circulation time: a feasibility study using color-coded quantitative DSA in patients with steno-occlusive arterial disease. Am J Neuroradiol. 2012;33:1685–90.CrossRefGoogle Scholar
  10. 10.
    Gölitz P, Struffert T, Rösch J, Ganslandt O, Knossalla FKnossalla F, Doerfler A. Cerebral aneurysm treatment using flow-diverting stents: in-vivo visualization of flow alterations by parametric colour coding to predict aneurysmal occlusion: preliminary results. Eur Radiol. 2015;25:428–35.CrossRefGoogle Scholar
  11. 11.
    Strother CM, Bender F, Deuerling-Zheng Y, Royalty K, Pulfer KA, Baumgart J, Zellerhoff M, Aagaard-Kienitz B, Niemann DB, Lindstrom ML. Parametric color coding of digital subtraction angiography. Am J Neuroradiol. 2010;31:919–24.CrossRefGoogle Scholar
  12. 12.
    Lin CF, Hsu SP, Lin CJ, Guo WY, Liao CH, Chu WF, Hung SC, Shih YS, Lin YT. Prolonged cerebral circulation time is the best parameter for predicting vasospasm during initial CT perfusion in subarachnoid hemorrhagic patients. PLoS ONE. 2016;11:e0151772.CrossRefGoogle Scholar
  13. 13.
    Burkhardt JK, Chen X, Winkler EA, Cooke DL, Kim H, Lawton MT. Delayed venous drainage in ruptured arteriovenous malformations based on quantitative color-coded digital subtraction angiography. World Neurosurg. 2017;104:619–27.CrossRefGoogle Scholar
  14. 14.
    Greitz T. Normal cerebral circulation time as determined by carotid angiography with sodium and methylglucamine diatrizoate (Urografin). Acta Radiol Diagn. 1968;7:331–6.CrossRefGoogle Scholar
  15. 15.
    Lin CJ, Hung SC, Chang FC, Guo WY, Luo CB, Kowarschik M, Chu WF, Liou AJ. Finding the optimal deconvolution algorithm for MR perfusion in carotid stenosis: correlations with angiographic cerebral circulation time. J Neuroradiol. 2016;43:290–6.CrossRefGoogle Scholar
  16. 16.
    van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19:604–7.CrossRefGoogle Scholar
  17. 17.
    Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, Panerai RB. Cerebral hemodynamics: concepts of clinical importance. Arq Neuropsiquiatr. 2012;70:352–6.CrossRefGoogle Scholar
  18. 18.
    Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.CrossRefGoogle Scholar
  19. 19.
    Meng L, Hou W, Chui J, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208.CrossRefGoogle Scholar
  20. 20.
    Cho S, Fujigaki T, Uchiyama Y, Fukusaki M, Shibata O, Sumikawa K. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation: transcranial Doppler study. Anesthesiology. 1996;85:755–60.CrossRefGoogle Scholar
  21. 21.
    Matta BF, Lam AM, Strebel S, Mayberg TS. Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. Br J Anaesth. 1995;74:159–63.CrossRefGoogle Scholar
  22. 22.
    Gupta S, Heath K, Matta BF. Effect of incremental doses of sevoflurane on cerebral pressure autoregulation in humans. Br J Anaesth. 1997;79:469–72.CrossRefGoogle Scholar
  23. 23.
    Husedzinović I, Tonković D, Barisin S, Bradić N, Gasparović S. Hemodynamic differences in sevoflurane versus propofol anesthesia. Coll Antropol. 2003;27:205–12.Google Scholar
  24. 24.
    Zhang Y, Lin W, Shen S, Wang H, Feng X, Sun J. Randomized comparison of sevoflurane versus propofol-remifentanil on the cardioprotective effects in elderly patients with coronary heart disease. BMC Anesthesiol. 2017;17:104.CrossRefGoogle Scholar
  25. 25.
    Shigematsu T, Fujinaka T, Yoshimine T, Imamura H, Ishii A, Sakai C, Sakai N, JR-NET Investigators. Endovascular therapy for asymptomatic unruptured intracranial aneurysms: JR-NET and JR-NET2 findings. Stroke. 2013;44:2735–42.CrossRefGoogle Scholar
  26. 26.
    Pierot L, Spelle L, Vitry F, ATENA Investigators. Immediate clinical outcome of patients harboring unruptured intracranial aneurysms treated by endovascular approach: results of the ATENA study. Stroke. 2008;39:2497–504.CrossRefGoogle Scholar
  27. 27.
    Coley S, Sneade M, Clarke A, Mehta Z, Kallmes D, Cekirge S, Saatci I, Roy D, Molyneux A. Cerecyte coil trial: procedural safety and clinical outcomes in patients with ruptured and unruptured intracranial aneurysms. Am J Neuroradiol. 2012;33:474–80.CrossRefGoogle Scholar
  28. 28.
    Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.CrossRefGoogle Scholar
  29. 29.
    Samra SK, Dy EA, Welch K, Dorje P, Zelenock GB, Stanley JC. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology. 2000;93:964–70.CrossRefGoogle Scholar
  30. 30.
    Moerman AT, De Hert SG, Jacobs TF, De Wilde LF, Wouters PF. Cerebral oxygen desaturation during beach chair position. Eur J Anaesthesiol. 2012;29:82–7.CrossRefGoogle Scholar
  31. 31.
    Moritz S, Rochon J, Völkel S, Hilker M, Hobbhahn J, Graf BM, Arlt M. Determinants of cerebral oximetry in patients undergoing off-pump coronary artery bypass grafting: an observational study. Eur J Anaesthesiol. 2010;27:542–9.CrossRefGoogle Scholar
  32. 32.
    Moerman A, Vandenplas G, Bové T, Wouters PF, De Hert SG. Relationship between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting. Br J Anaesth. 2013;110:258–65.CrossRefGoogle Scholar
  33. 33.
    Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tomoko Ishibashi
    • 1
  • Satoshi Toyama
    • 2
    Email author
  • Kazunori Miki
    • 3
  • Jun Karakama
    • 3
  • Yoshikazu Yoshino
    • 3
  • Satoru Ishibashi
    • 4
  • Makoto Tomita
    • 5
  • Shigeru Nemoto
    • 3
  1. 1.Department of Anesthesiology, Graduate School of Medicine and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Critical Care and AnesthesiaNational Center for Child Health and DevelopmentTokyoJapan
  3. 3.Department of Endovascular Surgery, Graduate School of Medicine and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
  4. 4.Department of Neurology, Graduate School of Medicine and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
  5. 5.Clinical Research Center, Graduate School of Medicine and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations