Advertisement

Journal of Clinical Monitoring and Computing

, Volume 32, Issue 4, pp 651–666 | Cite as

Toxicity of inhaled agents after prolonged administration

  • Panumart ManatponEmail author
  • W. Andrew Kofke
Original Research

Abstract

Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. Over the last decade, several clinical and animal studies of neurotoxicity attributable to inhaled anesthetics have been emerging, particularly in extremes of age. This review overviews potential for and potential mechanisms of neurotoxicity and systemic toxicity of prolonged inhaled anesthesia and clinical scenarios where inhaled anesthesia has been used in order to assess safety of possible prolonged use for sedation. High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.

Keywords

Neurotoxicity Sedation Critical care ICU Inhaled agents Volatile anesthetics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Inman WH, Mushin WW. Jaundice after repeated exposure to halothane: an analysis of Reports to the Committee on Safety of Medicines. Br Med J. 1974;1(5896):5–10.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mazze RI, Shue GL, Jackson SH. Renal dysfunction associated with methoxyflurane anesthesia. A randomized, prospective clinical evaluation. JAMA. 1971;216(2):278–88.PubMedGoogle Scholar
  3. 3.
    Cousins MJ, Fulton A, David W, Haynes G, Whitehead R. Enflurane nephrotoxicity and pre-existing renal dysfunction. Anaesth Intensive Care. 1978;6(4):277–89.PubMedGoogle Scholar
  4. 4.
    Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009;110(3):548–55.  https://doi.org/10.1097/ALN.0b013e318195b569.CrossRefGoogle Scholar
  5. 5.
    Culley DJ, Baxter MG, Crosby CA, Yukhananov R, Crosby G. Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats. Anesth Analg. 2004;99(5):1393–7.  https://doi.org/10.1213/01.ane.0000135408.14319.cc.CrossRefPubMedGoogle Scholar
  6. 6.
    Culley DJ, Baxter M, Yukhananov R, Crosby G. The memory effects of general anesthesia persist for weeks in young and aged rats. Anesth Analg. 2003;96(4):1004–9.PubMedGoogle Scholar
  7. 7.
    Lee IH, Culley DJ, Baxter MG, Xie Z, Tanzi RE, Crosby G. Spatial memory is intact in aged rats after propofol anesthesia. Anesth Analg. 2008;107(4):1211–5.  https://doi.org/10.1213/ane.0b013e31817ee879.CrossRefPubMedGoogle Scholar
  8. 8.
    Dutton RC, Maurer AJ, Sonner JM, Fanselow MS, Laster MJ, Eger EI. 2nd (2002) Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning. Anesthesiology 96 (5):1223–9.PubMedGoogle Scholar
  9. 9.
    Wiklund A, Granon S, Faure P, Sundman E, Changeux JP, Eriksson LI. Object memory in young and aged mice after sevoflurane anaesthesia. Neuroreport. 2009;20(16):1419–23.  https://doi.org/10.1097/WNR.0b013e328330cd2b.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu XS, Xue QS, Zeng QW, Li Q, Liu J, Feng XM, Yu BW. Sevoflurane impairs memory consolidation in rats, possibly through inhibiting phosphorylation of glycogen synthase kinase-3beta in the hippocampus. Neurobiol Learn Mem. 2010;94(4):461–7.  https://doi.org/10.1016/j.nlm.2010.08.011.CrossRefPubMedGoogle Scholar
  11. 11.
    Culley DJ, Raghavan SV, Waly M, Baxter MG, Yukhananov R, Deth RC, Crosby G. Nitrous oxide decreases cortical methionine synthase transiently but produces lasting memory impairment in aged rats. Anesth Analg. 2007;105(1):83–8.  https://doi.org/10.1213/01.ane.0000266491.53318.20.CrossRefPubMedGoogle Scholar
  12. 12.
    Xiong WX, Zhou GX, Wang B, Xue ZG, Wang L, Sun HC, Ge SJ. Impaired spatial learning and memory after sevoflurane-nitrous oxide anesthesia in aged rats is associated with down-regulated cAMP/CREB signaling. PLoS ONE. 2013;8(11):e79408.  https://doi.org/10.1371/journal.pone.0079408.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jevtovic-Todorovic V, Beals J, Benshoff N, Olney JW. Prolonged exposure to inhalational anesthetic nitrous oxide kills neurons in adult rat brain. Neuroscience. 2003;122(3):609–16.PubMedGoogle Scholar
  14. 14.
    Jevtovic-Todorovic V, Wozniak DF, Benshoff ND, Olney JW. A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res. 2001;895(1–2):264–7.PubMedGoogle Scholar
  15. 15.
    Rammes G, Starker LK, Haseneder R, Berkmann J, Plack A, Zieglgansberger W, Ohl F, Kochs EF, Blobner M. Isoflurane anaesthesia reversibly improves cognitive function and long-term potentiation (LTP) via an up-regulation in NMDA receptor 2B subunit expression. Neuropharmacology. 2009;56(3):626–36.  https://doi.org/10.1016/j.neuropharm.2008.11.002.CrossRefPubMedGoogle Scholar
  16. 16.
    Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, Visrodia KH, Alvi RS, Ku B, Lee MT, Dai R. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology. 2009;110(4):834–48.  https://doi.org/10.1097/ALN.0b013e31819c463d.CrossRefPubMedGoogle Scholar
  17. 17.
    Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG, Eckenhoff MF. Anesthesia in presymptomatic Alzheimer’s disease: a study using the triple-transgenic mouse model. Alzheimer’s Dementia. 2011;7(5):521–31.  https://doi.org/10.1016/j.jalz.2010.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wilson CJ, Finch CE, Cohen HJ. Cytokines and cognition: the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc. 2002;50(12):2041–56.PubMedGoogle Scholar
  19. 19.
    McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev. 1995;21(2):195–218.PubMedGoogle Scholar
  20. 20.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.  https://doi.org/10.1016/s1474-4422(15)70016-5.CrossRefPubMedGoogle Scholar
  21. 21.
    Terrando N, Brzezinski M, Degos V, Eriksson LI, Kramer JH, Leung JM, Miller BL, Seeley WW, Vacas S, Weiner MW, Yaffe K, Young WL, Xie Z, Maze M. Perioperative cognitive decline in the aging population. Mayo Clinic Proc. 2011;86(9):885–893.  https://doi.org/10.4065/mcp.2011.0332.CrossRefGoogle Scholar
  22. 22.
    Beloosesky Y, Hendel D, Weiss A, Hershkovitz A, Grinblat J, Pirotsky A, Barak V. Cytokines and C-reactive protein production in hip-fracture-operated elderly patients. J Gerontol A. 2007;62 (4):420–6.Google Scholar
  23. 23.
    Buvanendran A, Kroin JS, Berger RA, Hallab NJ, Saha C, Negrescu C, Moric M, Caicedo MS, Tuman KJ. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006;104(3):403–10.PubMedGoogle Scholar
  24. 24.
    Ologunde R, Ma D. Do inhalational anesthetics cause cognitive dysfunction? Acta Anaesthesiol Taiwan. 2011;49(4):149–53.  https://doi.org/10.1016/j.aat.2011.11.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu X, Lu Y, Dong Y, Zhang G, Zhang Y, Xu Z, Culley DJ, Crosby G, Marcantonio ER, Tanzi RE, Xie Z. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alpha, IL-6, and IL-1beta. Neurobiol Aging. 2012;33(7):1364–78.  https://doi.org/10.1016/j.neurobiolaging.2010.11.002.CrossRefPubMedGoogle Scholar
  26. 26.
    Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–8.  https://doi.org/10.1002/ana.22082.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Terrando N, Monaco C, Ma D, Foxwell BMJ, Feldmann M, Maze M. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci USA. 2010;107(47):20518–22.  https://doi.org/10.1073/pnas.1014557107.CrossRefPubMedGoogle Scholar
  28. 28.
    Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, van Beem H, Fraidakis O, Silverstein JH, Beneken JE, Gravenstein JS. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):857–61.PubMedGoogle Scholar
  29. 29.
    Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013;39(1):19–34.  https://doi.org/10.1111/j.1365-2990.2012.01306.x.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chan MT, Cheng BC, Lee TM, Gin T. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013;25(1):33–42.  https://doi.org/10.1097/ANA.0b013e3182712fba.CrossRefPubMedGoogle Scholar
  31. 31.
    Sprung J, Jankowski CJ, Roberts RO, Weingarten TN, Aguilar AL, Runkle KJ, Tucker AK, McLaren KC, Schroeder DR, Hanson AC, Knopman DS, Gurrieri C, Warner DO. Anesthesia and incident dementia: a population-based, nested, case-control study. Mayo Clin Proc. 2013;88(6):552–61.  https://doi.org/10.1016/j.mayocp.2013.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Williams-Russo P, Sharrock NE, Mattis S, Szatrowski TP, Charlson ME. Cognitive effects after epidural vs general anesthesia in older adults. A randomized trial. JAMA. 1995;274(1):44–50.PubMedGoogle Scholar
  33. 33.
    Wei H, Liang G, Yang H, Wang Q, Hawkins B, Madesh M, Wang S, Eckenhoff RG. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology. 2008;108(2):251–60.  https://doi.org/10.1097/01.anes.0000299435.59242.0e.CrossRefPubMedGoogle Scholar
  34. 34.
    Liang G, Ward C, Peng J, Zhao Y, Huang B, Wei H. Isoflurane causes greater neurodegeneration than an equivalent exposure of sevoflurane in the developing brain of neonatal mice. Anesthesiology. 2010;112(6):1325–34.  https://doi.org/10.1097/ALN.0b013e3181d94da5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang H, Liang G, Hawkins BJ, Madesh M, Pierwola A, Wei H. Inhalational anesthetics induce cell damage by disruption of intracellular calcium homeostasis with different potencies. Anesthesiology. 2008;109(2):243–50.  https://doi.org/10.1097/ALN.0b013e31817f5c47.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology. 2007;106(3):436–43.PubMedGoogle Scholar
  37. 37.
    Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, Frosch MP, Crosby G, Tanzi RE. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol. 2008;64(6):618–27.  https://doi.org/10.1002/ana.21548.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, Eckenhoff RG, Eckenhoff MF. Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging. 2008;29(7):1002–10.  https://doi.org/10.1016/j.neurobiolaging.2007.02.009.CrossRefPubMedGoogle Scholar
  39. 39.
    DeYoung TP, Li JC, Tang X, Ward CG, Dworkin BR, Eckenhoff MF, Kofke WA. Absence of neuropathology with prolonged isoflurane sedation in healthy adult rats. J Neurosurg Anesthesiol. 2016.  https://doi.org/10.1097/ana.0000000000000365.CrossRefGoogle Scholar
  40. 40.
    Tang JX, Baranov D, Hammond M, Shaw LM, Eckenhoff MF, Eckenhoff RG. Human Alzheimer and inflammation biomarkers after anesthesia and surgery. Anesthesiology. 2011;115(4):727–32.  https://doi.org/10.1097/ALN.0b013e31822e9306.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rowe K, Fletcher S. Sedation in the intensive care unit. Cont Educ Anaesth Crit Care Pain. 2008;8(2):50–5.  https://doi.org/10.1093/bjaceaccp/mkn005.CrossRefGoogle Scholar
  42. 42.
    Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, Davidson JE, Devlin JW, Kress JP, Joffe AM, Coursin DB, Herr DL, Tung A, Robinson BR, Fontaine DK, Ramsay MA, Riker RR, Sessler CN, Pun B, Skrobik Y, Jaeschke R. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.  https://doi.org/10.1097/CCM.0b013e3182783b72.CrossRefGoogle Scholar
  43. 43.
    Goren S, Kahveci N, Alkan T, Goren B, Korfali E. The effects of sevoflurane and isoflurane on intracranial pressure and cerebral perfusion pressure after diffuse brain injury in rats. J Neurosurg Anesthesiol. 2001;13(2):113–9.PubMedGoogle Scholar
  44. 44.
    Meiser A, Laubenthal H. Inhalational anaesthetics in the ICU: theory and practice of inhalational sedation in the ICU, economics, risk-benefit. Best Pract Res Clin Anaesthesiol. 2005;19(3):523–38.PubMedGoogle Scholar
  45. 45.
    Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol. 2004;65(5):1172–80.  https://doi.org/10.1124/mol.65.5.1172.CrossRefPubMedGoogle Scholar
  46. 46.
    Bleilevens C, Roehl AB, Goetzenich A, Zoremba N, Kipp M, Dang J, Tolba R, Rossaint R, Hein M. Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model. Exp Brain Res. 2013;224(2):155–64.  https://doi.org/10.1007/s00221-012-3296-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Li L, Zuo Z. Isoflurane postconditioning induces neuroprotection via Akt activation and attenuation of increased mitochondrial membrane permeability. Neuroscience. 2011;199:44–50.  https://doi.org/10.1016/j.neuroscience.2011.10.022.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen Y, Nie H, Tian L, Tong L, Deng J, Zhang Y, Dong H, Xiong L. Sevoflurane preconditioning-induced neuroprotection is associated with Akt activation via carboxy-terminal modulator protein inhibition. Br J Anaesth. 2015;114(2):327–35.  https://doi.org/10.1093/bja/aeu271.CrossRefPubMedGoogle Scholar
  49. 49.
    Ye Z, Xia P, Cheng Z-g, Guo Q. Neuroprotection induced by sevoflurane-delayed post-conditioning is attributable to increased phosphorylation of mitochondrial GSK-3β through the PI3K/Akt survival pathway. J Neurol Sci. 2015;348(1–2):216–25.  https://doi.org/10.1016/j.jns.2014.12.011.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang JK, Wu HF, Zhou H, Yang B, Liu XZ. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury involving mitochondrial ATP-dependent potassium channel and mitochondrial permeability transition pore. Neurol Res. 2015;37(1):77–83.  https://doi.org/10.1179/1743132814y.0000000410.CrossRefPubMedGoogle Scholar
  51. 51.
    Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17(4):439–47.  https://doi.org/10.1038/nm.2333.CrossRefPubMedGoogle Scholar
  52. 52.
    Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol–implications for sedation of neurocritical care patients. Exp Neurol. 2014;252:12–7.  https://doi.org/10.1016/j.expneurol.2013.11.003.CrossRefPubMedGoogle Scholar
  53. 53.
    Kofke WA, Hawkins RA, Davis DW, Biebuyck JF. Comparison of the effects of volatile anesthetics on brain glucose metabolism in rats. Anesthesiology. 1987;66(6):810–3.PubMedGoogle Scholar
  54. 54.
    Sivasankar C, Stiefel M, Miano TA, Kositratna G, Yandrawatthana S, Hurst R, Kofke WA. Anesthetic variation and potential impact of anesthetics used during endovascular management of acute ischemic stroke. J Neurointerven Surg. 2016;8(11):1101–6.  https://doi.org/10.1136/neurintsurg-2015-011998.CrossRefGoogle Scholar
  55. 55.
    Hoffman WE, Charbel FT, Edelman G, Ausman JI. Thiopental and desflurane treatment for brain protection. Neurosurgery. 1998;43(5):1050–3.PubMedGoogle Scholar
  56. 56.
    Bosel J, Purrucker JC, Nowak F, Renzland J, Schiller P, Perez EB, Poli S, Brunn B, Hacke W, Steiner T. Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa((R)): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med. 2012;38(12):1955–64.  https://doi.org/10.1007/s00134-012-2708-8.CrossRefPubMedGoogle Scholar
  57. 57.
    Villa F, Iacca C, Molinari AF, Giussani C, Aletti G, Pesenti A, Citerio G. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med. 2012;40(10):2797–804.  https://doi.org/10.1097/CCM.0b013e31825b8bc6.CrossRefPubMedGoogle Scholar
  58. 58.
    Kong KL, Willatts SM, Prys-Roberts C. Isoflurane compared with midazolam for sedation in the intensive care unit. BMJ (Clin Res Ed). 1989;298(6683):1277–80.Google Scholar
  59. 59.
    Sackey PV, Martling CR, Carlsward C, Sundin O, Radell PJ. Short- and long-term follow-up of intensive care unit patients after sedation with isoflurane and midazolam–a pilot study. Crit Care Med. 2008;36(3):801–6.  https://doi.org/10.1097/ccm.0b013e3181652fee.CrossRefPubMedGoogle Scholar
  60. 60.
    Bellgardt M, Bomberg H, Herzog-Niescery J, Dasch B, Vogelsang H, Weber TP, Steinfort C, Uhl W, Wagenpfeil S, Volk T, Meiser A. Survival after long-term isoflurane sedation as opposed to intravenous sedation in critically ill surgical patients: Retrospective analysis. Eur J Anaesthesiol. 2016;33(1):6–13.  https://doi.org/10.1097/eja.0000000000000252.CrossRefPubMedGoogle Scholar
  61. 61.
    Singhal S, Gray T, Guzman G, Verma A, Anand K. Sevoflurane hepatotoxicity: a case report of sevoflurane hepatic necrosis and review of the literature. Am J Ther. 2010;17(2):219–22.  https://doi.org/10.1097/MJT.0b013e318197eacb.CrossRefPubMedGoogle Scholar
  62. 62.
    Turner GB, O’Rourke D, Scott GO, Beringer TR. Fatal hepatotoxicity after re-exposure to isoflurane: a case report and review of the literature. Eur J Gastroenterol Hepatol. 2000;12(8):955–9.PubMedGoogle Scholar
  63. 63.
    Perbet S, Bourdeaux D, Sautou V, Pereira B, Chabanne R, Constantin JM, Chopineau J, Bazin JE. A pharmacokinetic study of 48-hour sevoflurane inhalation using a disposable delivery system (AnaConDa(R)) in ICU patients. Minerva Anestesiol. 2014;80(6):655–65.PubMedGoogle Scholar
  64. 64.
    Tanigami H, Yahagi N, Kumon K, Watanabe Y, Haruna M, Matsui J, Hayashi H. Long-term sedation with isoflurane in postoperative intensive care in cardiac surgery. Artif Organs. 1997;21(1):21–3.PubMedGoogle Scholar
  65. 65.
    Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth. 2005;15(10):879–85.  https://doi.org/10.1111/j.1460-9592.2005.01704.x.CrossRefPubMedGoogle Scholar
  66. 66.
    Misra S, Koshy T. A review of the practice of sedation with inhalational anaesthetics in the intensive care unit with the AnaConDa(®) device. Indian J Anaesth. 2012;56(6):518–23.  https://doi.org/10.4103/0019-5049.104565.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sackey PV, Martling CR, Granath F, Radell PJ. Prolonged isoflurane sedation of intensive care unit patients with the anesthetic conserving device. Crit Care Med. 2004;32(11):2241–6.PubMedGoogle Scholar
  68. 68.
    L’Her E, Dy L, Pili R, Prat G, Tonnelier JM, Lefevre M, Renault A, Boles JM. Feasibility and potential cost/benefit of routine isoflurane sedation using an anesthetic-conserving device: a prospective observational study. Respir Care. 2008;53(10):1295–303.PubMedGoogle Scholar
  69. 69.
    Rohm KD, Wolf MW, Schollhorn T, Schellhaass A, Boldt J, Piper SN. Short-term sevoflurane sedation using the anaesthetic conserving device after cardiothoracic surgery. Intensive Care Med. 2008;34(9):1683–9.  https://doi.org/10.1007/s00134-008-1157-x.CrossRefPubMedGoogle Scholar
  70. 70.
    Rossetti AO, Lowenstein DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol. 2011;10(10):922–30.  https://doi.org/10.1016/S1474-4422(11)70187-9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Novy J, Logroscino G, Rossetti AO. Refractory status epilepticus: a prospective observational study. Epilepsia. 2010;51(2):251–6.  https://doi.org/10.1111/j.1528-1167.2009.02323.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Kofke WA, Ahdab-Barmada M, Rose M, Clyde C, Nemoto E. Substantia nigra damage after fluorothyl-induced seizures in rats worsens after post-seizure recovery: no exacerbation with hyperglycaemia. Neurol Res. 1993;15(5):333–8.PubMedGoogle Scholar
  73. 73.
    O’Connell BK, Towfighi J, Kofke WA, Hawkins RA. Neuronal lesions in mercaptopropionic acid-induced status epilepticus. Acta Neuropathol (Berl). 1988;77(1):47–54.Google Scholar
  74. 74.
    Towfighi J, Kofke WA, O’Connell BK, Housman C, Graybeal JM. Substantia nigra lesions in mercaptopropionic acid induced status epilepticus: a light and electron microscopic study. Acta Neuropathol (Berl). 1989;77(6):612–20.Google Scholar
  75. 75.
    Inamura K, Smith ML, Hansen AJ, Siesjo BK. Seizure-induced damage to substantia nigra and globus pallidus is accompanied by pronounced intra- and extracellular acidosis. J Cerebr Blood Flow Metabol. 1989;9(6):821–9.  https://doi.org/10.1038/jcbfm.1989.116.CrossRefGoogle Scholar
  76. 76.
    Lothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 1981;218(1–2):299–318.PubMedGoogle Scholar
  77. 77.
    Meldrum BS. First Alfred Meyer memorial lecture. epileptic brain damage: a consequence and a cause of seizures. Neuropathol Appl Neurobiol. 1997;23(3):185–201. (discussion 182–201).PubMedGoogle Scholar
  78. 78.
    Shorvon S, Ferlisi M. The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain. 2011;134(Pt 10):2802–18.  https://doi.org/10.1093/brain/awr215.CrossRefPubMedGoogle Scholar
  79. 79.
    Claassen J, Hirsch LJ, Emerson RG, Mayer SA. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia. 2002;43(2):146–53.PubMedGoogle Scholar
  80. 80.
    Petursson H. The benzodiazepine withdrawal syndrome. Addiction. 1994;89(11):1455–9.PubMedGoogle Scholar
  81. 81.
    Osgood CW. Convulsive seizures following barbiturate withdrawal. J Am Med Assoc. 1947;133(2):104.PubMedGoogle Scholar
  82. 82.
    Kofke WA, Young RS, Davis P, Woelfel SK, Gray L, Johnson D, Gelb A, Meeke R, Warner DS, Pearson KS, et al. Isoflurane for refractory status epilepticus: a clinical series. Anesthesiology. 1989;71(5):653–9.PubMedGoogle Scholar
  83. 83.
    Kofke WA, Snider MT, Young RS, Ramer JC. Prolonged low flow isoflurane anesthesia for status epilepticus. Anesthesiology. 1985;62(5):653–6.PubMedGoogle Scholar
  84. 84.
    Gibert S, Sabourdin N, Louvet N, Moutard ML, Piat V, Guye ML, Rigouzzo A, Constant I. Epileptogenic effect of sevoflurane: determination of the minimal alveolar concentration of sevoflurane associated with major epileptoid signs in children. Anesthesiology. 2012;117(6):1253–61.  https://doi.org/10.1097/ALN.0b013e318273e272.CrossRefPubMedGoogle Scholar
  85. 85.
    Zeiler FA, Zeiler KJ, Teitelbaum J, Gillman LM, West M. Modern inhalational anesthetics for refractory status epilepticus. Can J Neurol Sci. 2015;42(2):106–15.  https://doi.org/10.1017/cjn.2014.121.CrossRefPubMedGoogle Scholar
  86. 86.
    Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–22.  https://doi.org/10.1097/ALN.0b013e3181cea398.CrossRefPubMedGoogle Scholar
  87. 87.
    Azzopardi D, Robertson NJ, Kapetanakis A, Griffiths J, Rennie JM, Mathieson SR, Edwards AD. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed. 2013;98(5):F437-439.  https://doi.org/10.1136/archdischild-2013-303786.CrossRefGoogle Scholar
  88. 88.
    Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S, Sanders RD, Franks NP, Maze M. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cerebr Blood Flow Metabol. 2006;26(2):199–208.  https://doi.org/10.1038/sj.jcbfm.9600184.CrossRefGoogle Scholar
  89. 89.
    Fugate JE, Burns JD, Wijdicks EF, Warner DO, Jankowski CJ, Rabinstein AA. Prolonged high-dose isoflurane for refractory status epilepticus: is it safe? Anesth Analg. 2010;111(6):1520–4.  https://doi.org/10.1213/ANE.0b013e3181f6da34.CrossRefPubMedGoogle Scholar
  90. 90.
    Ikeda KM, Connors R, Lee DH, Khandji AG, Claassen J, Young GB. Isoflurane Use in the treatment of super-refractory status epilepticus is associated with hippocampal changes on MRI. Neurocrit Care. 2016.  https://doi.org/10.1007/s12028-016-0340-0.CrossRefPubMedGoogle Scholar
  91. 91.
    Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure. 2009;18(2):104–8.  https://doi.org/10.1016/j.seizure.2008.07.004.CrossRefPubMedGoogle Scholar
  92. 92.
    Kofke WA, Towfighi J, Garman RH, Graybeal JM, Housman C, Hawkins RA. Effect of anesthetics on neuropathologic sequelae of status epilepticus in rats. Anesth Analg. 1993;77(2):330–7.PubMedGoogle Scholar
  93. 93.
    Meeke RI, Soifer BE, Gelb AW. Isoflurane for the management of status epilepticus. DICP. 1989;23(7–8):579–81.PubMedGoogle Scholar
  94. 94.
    Mirsattari SM, Sharpe MD, Young GB. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol. 2004;61(8):1254–9.  https://doi.org/10.1001/archneur.61.8.1254.CrossRefPubMedGoogle Scholar
  95. 95.
    Astrup J, Blennow G, Nilsson B. Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures. Brain Res. 1979;177(1):115–26.PubMedGoogle Scholar
  96. 96.
    Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.  https://doi.org/10.1111/j.1398-9995.2004.00526.x.CrossRefPubMedGoogle Scholar
  97. 97.
    Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in admissions for pediatric status asthmaticus in New Jersey over a 15-year period. Pediatrics. 2010;126(4):e904–11.  https://doi.org/10.1542/peds.2009-3239.CrossRefPubMedGoogle Scholar
  98. 98.
    Carrie S, Anderson TA. Volatile anesthetics for status asthmaticus in pediatric patients: a comprehensive review and case series. Paediatr Anaesth. 2015;25(5):460–7.  https://doi.org/10.1111/pan.12577.CrossRefPubMedGoogle Scholar
  99. 99.
    Turner DA, Heitz D, Cooper MK, Smith PB, Arnold JH, Bateman ST. Isoflurane for life-threatening bronchospasm: a 15-year single-center experience. Respir Care. 2012;57(11):1857–64.  https://doi.org/10.4187/respcare.01605.CrossRefPubMedGoogle Scholar
  100. 100.
    Johnston RG, Noseworthy TW, Friesen EG, Yule HA, Shustack A. Isoflurane therapy for status asthmaticus in children and adults. Chest. 1990;97(3):698–701.PubMedGoogle Scholar
  101. 101.
    Wheeler DS, Clapp CR, Ponaman ML, Bsn HM, Poss WB. Isoflurane therapy for status asthmaticus in children: a case series and protocol. Pediatr Crit Care Med. 2000;1(1):55–9.PubMedGoogle Scholar
  102. 102.
    Katoh T, Ikeda K. A comparison of sevoflurane with halothane, enflurane, and isoflurane on bronchoconstriction caused by histamine. Can J Anaesth. 1994;41(12):1214–9.  https://doi.org/10.1007/bf03020665.CrossRefPubMedGoogle Scholar
  103. 103.
    Tanigaki T, Kondo T, Ohta Y, Yamabayashi H. (1990) Transient neuromuscular impairment resulting from prolonged inhalation of halothane and enflurane. Chest 98 (4):1012–3.  https://doi.org/10.1378/chest.98.4.1012.CrossRefPubMedGoogle Scholar
  104. 104.
    Bentley JB, Vaughan RW, Gandolfi AJ, Cork RC. Halothane biotransformation in obese and nonobese patients. Anesthesiology. 1982;57(2):94–7.PubMedGoogle Scholar
  105. 105.
    Dikmen Y, Eminoglu E, Salihoglu Z, Demiroluk S. Pulmonary mechanics during isoflurane, sevoflurane and desflurane anaesthesia. Anaesthesia. 2003;58(8):745–8.PubMedGoogle Scholar
  106. 106.
    von Ungern-Sternberg BS, Saudan S, Petak F, Hantos Z, Habre W. Desflurane but not sevoflurane impairs airway and respiratory tissue mechanics in children with susceptible airways. Anesthesiology. 2008;108(2):216–24.  https://doi.org/10.1097/01.anes.0000299430.90352.d5.CrossRefGoogle Scholar
  107. 107.
    Poulton TJ, Ellingson RJ. Seizure associated with induction of anesthesia with isoflurane. Anesthesiology. 1984;61(4):471–6.PubMedGoogle Scholar
  108. 108.
    Mori N, Nagata H, Ohta S, Suzuki M. Prolonged sevoflurane inhalation was not nephrotoxic in two patients with refractory status asthmaticus. Anesth Analg. 1996;83(1):189–91.PubMedGoogle Scholar
  109. 109.
    Watanabe K, Mizutani T, Yamashita S, Tatekawa Y, Jinbo T, Tanaka M. Prolonged sevoflurane inhalation therapy for status asthmaticus in an infant. Paediatr Anaesth. 2008;18(6):543–5.  https://doi.org/10.1111/j.1460-9592.2008.02503.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Anesthesiology and Critical CarePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations