Advertisement

Unveiling Antimicrobial Activity of Metal Iodide (CuI, AgI, and PbI2) Nanoparticles: Towards Biomedical Surfaces Applications

  • A. S. Awed
  • Gharieb S. El-SayyadEmail author
  • Ahmed El-ghandour
  • Mohamed Farhat O. Hameed
  • M. I. A. Abdel Maksoud
  • Ahmed I. El-Batal
  • S. S. A. ObayyaEmail author
Original Paper
  • 71 Downloads

Abstract

Synthesizing nanoparticles (NPs) capable of hindrance the microbial colonization is a global demand. Such NPs can prevent emerging infectious diseases that harm the public health. In this paper, a co-precipitation method is employed to synthesize colloidal of metal iodide, namely copper iodide (CuI), silver iodide (AgI), and lead iodide (PbI2). Subsequently, EDS, XRD, HRSEM with mapping technique are conducted to study the structural properties of the as-synthesized samples. Additionally, their absorption is highlighted using UV/Vis spectroscopy. NPs with average crystallite size equals to 54.98, 57.02, and 23.47 nm for PbI2, CuI, and AgI, respectively are calculated. SEM images show that PbI2 consists of randomly-oriented dense nanoflakes of iodide. CuI NPs have a dense medium with tiny particles adhered to larger particles related to copper. Further, AgI sample contains agglomerated crystallites with a combination of small and large sizes. Antimicrobial activity of the samples against all tested standard pathogens is examined. In particular, AgI NPs have a prominent antimicrobial capability against Escherichia coli, Candida albicans and Staphylococcus aureus (ZOI of 18.0, 16.0 and 15.0 mm, respectively). Therefore, the AgI NPs can be safely used in solving serious industrial, pharmaceutical and medical challenges and particularly in the treatment of surface infectious diseases.

Keywords

Silver iodide Copper iodide Lead iodide Antimicrobial activity Bio-medical surfaces applications 

Notes

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Chemical Engineering Department, Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Funding

Not applicable.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participation and/or Animals

Not applicable.

Informed consent

Not applicable.

Ethical approval

Not applicable.

References

  1. 1.
    M. A. Elkodous, G. S. El Sayyad, I. Y. Abdelrahman, H. S. El Bastawisy, A. E. Mohamed, F. M. Mosallam, H. A. Nasser, M. Gobara, A. Baraka, and M. A. Elsayed (2019). Colloids Surf. B Biointerfaces. 180, 411–428.  https://doi.org/10.1016/j.colsurfb.2019.05.008.CrossRefGoogle Scholar
  2. 2.
    M. A. Elkodous, G. S. El-Sayyad, H. A. Nasser, A. A. Elshamy, M. Morsi, I. Y. Abdelrahman, A. S. Kodous, F. M. Mosallam, M. Gobara, and A. I. El-Batal (2019). J. Cluster Sci.30, 531–540.CrossRefGoogle Scholar
  3. 3.
    A. Kramer, I. Schwebke, and G. Kampf (2006). BMC Infect. Dis.6, 130.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    M. Cloutier, D. Mantovani, and F. Rosei (2015). Trends Biotechnol.33, 637–652.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    T. Kramer, C. Schröder, M. Behnke, S. Aghdassi, C. Geffers, P. Gastmeier, and C. Remschmidt (2019). J. Infect.78, 215–219.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    A. I. El-Batal, G. S. El-Sayyad, N. E. Al-Hazmi, and M. Gobara (2019). J. Cluster Sci.30, 947–964.CrossRefGoogle Scholar
  7. 7.
    K. Glinel, P. Thebault, V. Humblot, C.-M. Pradier, and T. Jouenne (2012). Acta Biomater.8, 1670–1684.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    A.I. El-Batal, N.M. Balabel, M.S. Attia, and G.S. El-Sayyad (2019). J. Cluster Sci.  https://doi.org/10.1007/s10876-019-01707-4.CrossRefGoogle Scholar
  9. 9.
    J. L. Fox Antimicrobial peptides stage a comeback (Nature Publishing Group, Berlin, 2013).CrossRefGoogle Scholar
  10. 10.
    J. M. Bartley and R. N. Olmsted (2008). Clin. Microbiol. Newslett.30, 113–117.CrossRefGoogle Scholar
  11. 11.
    K. Page, M. Wilson, and I. P. Parkin (2009). J. Mater. Chem.19, 3819–3831.CrossRefGoogle Scholar
  12. 12.
    J. E. Ongerth, R. L. Johnson, S. C. MacDonald, F. Frost, and H. H. Stibbs (1989). Am. J. Public Health79, 1633–1637.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    H. Backer and J. Hollowell (2000). Environ. Health Perspect.108, 679–684.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    B. Meunier, J. Joskin, F. Damas, and P. Meunier (2013). Revue medicale de Liege68, 465–469.PubMedPubMedCentralGoogle Scholar
  15. 15.
    M. Baig, A. Farag, J. Sajid, R. Potluri, R. B. Irwin, and H. M. I. Khalid (2014). World J. Cardiol.6, 107.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K. M. Fromm (2013). Chem. Rev.113, 4708–4754.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Cluster Sci.29, 1003–1015.CrossRefGoogle Scholar
  18. 18.
    K. Chaloupka, Y. Malam, and A. M. Seifalian (2010). Trends Biotechnol.28, 580–588.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    M. S. Attia, G. S. El-Sayyad, S. S. Saleh, N. M. Balabel, and A. I. El-Batal (2019). J. Cluster Sci.30, 919–935.CrossRefGoogle Scholar
  20. 20.
    A. I. El-Batal, M. S. Attia, M. M. Nofel, and G. S. El-Sayyad (2019). J. Cluster Sci.30, 687–705.CrossRefGoogle Scholar
  21. 21.
    P. Kumar, U. Burman, and R. K. Kaul Ecological risks of nanoparticles: effect on soil microorganisms, nanomaterials in plants, algae, and microorganisms (Elsevier, Amsterdam, 2018), pp. 429–452.CrossRefGoogle Scholar
  22. 22.
    W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, and H. Wang (2009). Mater. Sci. Eng. C29, 1216–1219.CrossRefGoogle Scholar
  23. 23.
    H. Tan and W. Y. Fan (2005). Chem. Phys. Lett.406, 289–293.CrossRefGoogle Scholar
  24. 24.
    D.-L. Guan, C.-G. Niu, X.-J. Wen, H. Guo, C.-H. Deng, and G.-M. Zeng (2018). J. Colloid Interface Sci.512, 272–281.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    R. A. Ismail, G. M. Sulaiman, M. H. Mohsin, and A. H. Saadoon (2018). IET Nanobiotechnol.12, 781–786.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    A. R. Abbasi and A. Morsali (2010). Ultrason. Sonochem.17, 704–710.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    J.R. Torrey, Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications, Ph.D. Thesis; 2014.Google Scholar
  28. 28.
    J. R. Torrey Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications (The University of Arizona, Arizona, 2014).Google Scholar
  29. 29.
    A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, and P. Karmakar (2012). Colloids Surf. B Biointerfaces96, 50–55.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    D. Kalnina, K. A. Gross, P. Onufrijevs, E. Dauksta, V. Nikolajeva, Z. Stankeviciute, and A. Kareiva (2015). Key Eng. Mater.631, 384–389.CrossRefGoogle Scholar
  31. 31.
    D. R. Valiyev, M. V. Bazunova, V. V. Chernova, A. S. Shurshina, and E. I. Kulish (2018). Inorg. Mater. Appl. Res.9, 873–878.CrossRefGoogle Scholar
  32. 32.
    J. Eckstein, B. Erler, and K. Benz (1992). Mater. Res. Bull.27, 537–544.CrossRefGoogle Scholar
  33. 33.
    A. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Particuology40, 141–151.CrossRefGoogle Scholar
  34. 34.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol.29, 2616–2625.CrossRefGoogle Scholar
  35. 35.
    M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal.6, 71–79.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamry, K. M. Agaypi, M. A. Elsayed, and M. Gobara (2017). J. Photochem. Photobiol. B Biol.173, 120–139.CrossRefGoogle Scholar
  37. 37.
    A. I. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, and G. S. El-Sayyad (2018). Microb. Pathog.118, 159–169.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    G.S. El-Sayyad, F.M. Mosallam, S.S. El-Sayed, A.I. El-Batal (2019), J. Cluster Sci., 1–13.Google Scholar
  39. 39.
    U. Holzwarth and N. Gibson (2011). Nat. Nanotechnol.6, 534.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    V. Mote, Y. Purushotham, and B. Dole (2012). J. Theor. Appl. Phys.6, 6.CrossRefGoogle Scholar
  41. 41.
    T. Kamiya, K. Nomura, and H. Hosono (2009). Phys. Status Solidi206, 860–867.CrossRefGoogle Scholar
  42. 42.
    L. Huang, G. Szewczyk, T. Sarna, and M. R. Hamblin (2017). ACS Infect. Dis.3, 320–328.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    N. Gandhi, D. Sirisha, and S. Asthana (2018). Int. J. Eng. Sci. Res. Tech.7, 623–644.  https://doi.org/10.5281/zenodo.1161701.CrossRefGoogle Scholar
  44. 44.
    W. B. Jensen (2002). J. Chem. Educ.79, 944.CrossRefGoogle Scholar
  45. 45.
    S. Hull (2004). Rep. Prog. Phys.67, 1233–1314.CrossRefGoogle Scholar
  46. 46.
    Z.-X. Tang and B.-F. Lv (2014). Braz. J. Chem. Eng.31, 591–601.CrossRefGoogle Scholar
  47. 47.
    C.W. Wong, Y.S. Chan, J. Jeevanandam, K. Pal, M. Bechelany, M. Abd Elkodous, and G.S. El-Sayyad (2019). J. Cluster Sci.  https://doi.org/10.1007/s10876-019-01651-3.CrossRefGoogle Scholar
  48. 48.
    A. Baraka, S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. F. Tawfic (2017). Chem. Pap.71, 2271–2281.CrossRefGoogle Scholar
  49. 49.
    M. Abd Elkodous, G.S. El-Sayyad, M.I.A. Abdel Maksoud, I.Y. Abdelrahman, F.M. Mosallam, M. Gobara, and A.I. El-Batal (2019). Biol. Trace Element Res.  https://doi.org/10.1007/s12011-019-01894-1.CrossRefGoogle Scholar
  50. 50.
    S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol.73, 1712–1720.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    H. Bao, X. Yu, C. Xu, X. Li, Z. Li, D. Wei, and Y. Liu (2015). PLOS ONE10, e0122535.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    G. M. Sulaiman, H. T. Hussien, and M. M. N. M. Saleem (2015). Bull. Mater. Sci.38, 639–644.CrossRefGoogle Scholar
  53. 53.
    T. Gunasekaran and T. Nigusse (2011). J. Am. Coll. Clin. Wound Special.3, 82–96.CrossRefGoogle Scholar
  54. 54.
    W. G. Renné, A. Lindner, A. S. Mennito, K. A. Agee, D. H. Pashley, D. Willett, D. Sentelle, M. Defee, M. Schmidt, and C. Sabatini (2017). Clin. Oral Invest.21, 369–379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Photonics and Smart MaterialsZewail City of Science and TechnologyGizaEgypt
  2. 2.Higher Institute of Engineering and TechnologyManzalaEgypt
  3. 3.Drug Radiation Research DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  4. 4.Chemical Engineering Department, Military Technical CollegeEgyptian Armed ForcesCairoEgypt
  5. 5.Nanoelectronics and Nanotechnology and Engineering ProgramZewail City of Science and TechnologyGizaEgypt
  6. 6.Faculty of EngineeringMansoura UniversityMansouraEgypt
  7. 7.Materials Science Lab, Radiation Physics DepartmentNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt

Personalised recommendations