Solar Driven CO2 Hydrogenation on Ti-Doped Silicon Nanocages

  • Wei Pei
  • Si ZhouEmail author
  • Yizhen Bai
Brief Communication


Hydrogenation of carbon dioxide (CO2) to produce fuels and value-added chemicals is a critical reaction to solve both energy and environment issues. Developing efficient catalysts composed of earth-abundant, cost-effective and eco-friendly elements is highly desired but remains challenging. Here, we exploit titanium-doped silicon cage nanoclusters (TiSin, n = 12–16) for CO2 hydrogenation. Our first-principles calculations show that the activity and product selectivity of TiSin clusters exhibit remarkable size-dependences, and they can also absorb a large portion of sun light from visible to ultraviolet regimes to drive the catalysis. Their activity origins from the unsaturated electronic states on the silicon cage, mediated by the strong covalent bonding between Si and Ti atoms. More importantly, we establish a relationship between binding capability of TiSin clusters and the p orbital center of silicon cage, which provide general guidelines for atomically precise design of not only silicon-based clusters but also other non-metal catalysts for highly active and selective CO2 conversion.


Silicon nanoclusters Metal doping CO2 photo-conversion Si p orbital center 



This work was financially supported by the National Natural Science Foundation of China (11974068, 11574040), the Fundamental Research Funds for the Central Universities of China (DUT17LAB19), and the Supercomputing Center of Dalian University of Technology.

Supplementary material

10876_2019_1743_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1376 kb)


  1. 1.
    S. Sen, D. Liu, and G. T. R. Palmore (2014). ACS catal.4, 3091.CrossRefGoogle Scholar
  2. 2.
    Y. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun, and P. Yang (2017). Nano Lett.17, 1312.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M. Ma, K. Djanashvili, and W. A. Smith (2016). Angew. Chem. Int. Ed.55, 6680.CrossRefGoogle Scholar
  4. 4.
    J. Christophe, T. Doneux, and C. Buess-Herman (2012). Electrocatalysis3, 139.CrossRefGoogle Scholar
  5. 5.
    D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. Yang (2014). Nat. Commun.5, 4948.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, and K. Takanabe (2015). Angew. Chem. Int. Ed.54, 2146.CrossRefGoogle Scholar
  7. 7.
    K. Stangeland, D. Kalai, H. Li, and Z. Yu (2017). Energy Procedia105, 2022.CrossRefGoogle Scholar
  8. 8.
    Z. Bian, S. Das, M. H. Wai, P. Hongmanorom, and S. Kawi (2017). ChemPhysChem18, 3117.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    D. Preti, C. Resta, S. Squarcialupi, and G. Fachinetti (2011). Angew. Chem. Int. Ed.50, 12551.CrossRefGoogle Scholar
  10. 10.
    X. M. Liu, G. Q. Lu, Z. F. Yan, and J. Beltramini (2003). Ind. Eng. Chem. Res.42, 6518.CrossRefGoogle Scholar
  11. 11.
    G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski (1999). Chem. Soc. Rev.28, 179.CrossRefGoogle Scholar
  12. 12.
    T. O. Strandberg, C. M. Canali, and A. H. MacDonald (2007). Nat. Mater.6, 648.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    C. A. J. Lin, T. Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, and H. I. Yeh (2009). ACS Nano3, 395.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    N. Austin, S. Zhao, J. R. McKone, R. Jin, and G. Mpourmpakis (2018). Catal. Sci. Technol.8, 3795.CrossRefGoogle Scholar
  15. 15.
    L. Wang, X. Chai, X. Cheng, and Y. Zhu (2018). ChemistrySelect3, 6165.CrossRefGoogle Scholar
  16. 16.
    C. Liu, B. Yang, E. Tyo, S. Seifert, J. DeBartolo, B. von Issendorff, P. Zapol, S. Vajda, and L. A. Curtiss (2015). J. Am. Chem. Soc.137, 8676.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    T. Billo, F. Y. Fu, P. Raghunath, I. Shown, W. F. Chen, H. T. Lien, T. H. Shen, J. F. Lee, T. S. Chan, K. Y. Huang, C. I. Wu, M. C. Lin, J. S. Hwang, C. H. Lee, L. C. Chen, and K. H. Chen (2018). Small14, 1702928.CrossRefGoogle Scholar
  18. 18.
    Y. Liu, X. Chai, X. Cai, M. Chen, R. Jin, W. Ding, and Y. Zhu (2018). Angew. Chem. Int. Ed.57, 9775.CrossRefGoogle Scholar
  19. 19.
    C. Liu, H. He, P. Zapol, and L. A. Curtiss (2014). Phys. Chem. Chem. Phys.16, 26584.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    P. Liu, Y. Choi, Y. Yang, and M. G. White (2009). J. Phys. Chem. A114, 3888.CrossRefGoogle Scholar
  21. 21.
    C. Liu and P. Liu (2015). ACS Catal.5, 1004.CrossRefGoogle Scholar
  22. 22.
    H. T. Zhang, C. Liu, P. Liu, and Y. H. Hu (2019). J. Chem. Phys.151, 024304.CrossRefGoogle Scholar
  23. 23.
    K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature392, 582.CrossRefGoogle Scholar
  24. 24.
    U. Röthlisberger, W. Andreoni, and M. Parrinello (1994). Phys. Rev. Lett.72, 665.CrossRefGoogle Scholar
  25. 25.
    A. D. Zdetsis (2007). Phys. Rev. B76, 075402.CrossRefGoogle Scholar
  26. 26.
    J. Zhao, L. Ma, D. Tian, and R. Xie (2008). J. Comput. Theor. Nanos.5, 7.Google Scholar
  27. 27.
    V. Kumar and Y. Kawazoe (2001). Phys. Rev. Lett.87, 045503.CrossRefGoogle Scholar
  28. 28.
    V. Kumar and Y. Kawazoe (2003). Appl. Phys. Lett.83, 2677.CrossRefGoogle Scholar
  29. 29.
    H. Kawamura, V. Kumar, and Y. Kawazoe (2005). Phys. Rev. B71, 075423.CrossRefGoogle Scholar
  30. 30.
    H. Kawamura, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B70, 245433.CrossRefGoogle Scholar
  31. 31.
    V. Kumar and Y. Kawazoe (2002). Phys. Rev. B65, 073404.CrossRefGoogle Scholar
  32. 32.
    H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett.86, 1733.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya (2003). Chem. Phys. Lett.371, 490.CrossRefGoogle Scholar
  34. 34.
    M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima (2014). Nanoscale6, 14702.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima (2005). J. Am. Chem. Soc.127, 4998.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    H. Tsunoyama, M. Shibuta, M. Nakaya, T. Eguchi, and A. Nakajima (2018). Acc. Chem. Res.51, 1735.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    M. Shibuta, T. Niikura, T. Kamoshida, H. Tsunoyama, and A. Nakajima (2018). Phys. Chem. Chem. Phys.20, 26273.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    M. Shibuta, T. Kamoshida, T. Ohta, H. Tsunoyama, and A. Nakajima (2018). Commun. Chem.1, 50.CrossRefGoogle Scholar
  39. 39.
    S. Zhou, X. Yang, W. Pei, J. Zhao, and A. Du (2019). J. Phys. Chem. C123, 9973.CrossRefGoogle Scholar
  40. 40.
    J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Mol. Simulat.42, 809.CrossRefGoogle Scholar
  41. 41.
    B. Delley (2000). J. Chem. Phys.113, 7756.CrossRefGoogle Scholar
  42. 42.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett.77, 3865.CrossRefGoogle Scholar
  43. 43.
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg (2010). J. Chem. Phys.132, 154104.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    G. Kresse and J. Furthmüller (1996). Phys. Rev. B54, 11169.CrossRefGoogle Scholar
  45. 45.
    G. Kresse and D. Joubert (1999). Phys. Rev. B59, 1758.CrossRefGoogle Scholar
  46. 46.
    X. Wu, X. Liang, Q. Du, J. Zhao, M. Chen, M. Lin, J. Wang, G. Yin, L. Ma, and R. B. King (2018). J. Phys. Condens. Matter30, 354002.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    X. Wu, S. Zhou, X. Huang, M. Chen, R. Bruce, and J. Zhao (2018). J. Comput. Chem.39, 2268.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    C. Kittel Introductions to solid states physics (Wiley, New York, 2005).Google Scholar
  49. 49.
    A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys.83, 735.CrossRefGoogle Scholar
  50. 50.
    M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson (2009). Inc., Wallingford, CT200, 28.Google Scholar
  51. 51.
    M. W. Chase (1996). J. Phys. Chem. Ref. Data25, 551.CrossRefGoogle Scholar
  52. 52.
    G. Henkelman, B. P. Uberuaga, and H. Jónsson (2000). J. Chem. Phys.113, 9901.CrossRefGoogle Scholar
  53. 53.
    I. Mayer (1983). Chem. Phys. Lett.97, 270.CrossRefGoogle Scholar
  54. 54.
    R. S. Mulliken (1955). J. Chem. Phys.23, 1833.CrossRefGoogle Scholar
  55. 55.
    M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, and B. L. Kniep (2012). Science336, 893.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Y. Yang, J. Evans, J. A. Rodriguez, M. G. White, and P. Liu (2010). Phys. Chem. Chem. Phys.12, 9909.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, and J. Ye (2015). Angew. Chem. Int. Ed.54, 841.CrossRefGoogle Scholar
  58. 58.
    W. Tu, Y. Zhou, and Z. Zou (2014). Adv. Mater.26, 4607.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    J. Ren, S. Ouyang, H. Xu, X. Meng, T. Wang, D. Wang, and J. Ye (2017). Adv. Energy Mater7, 1601657.CrossRefGoogle Scholar
  60. 60.
    W. Pei, S. Zhou, Y. Bai, and J. Zhao (2018). Carbon133, 260.CrossRefGoogle Scholar
  61. 61.
    S. Zhou, X. Yang, W. Pei, N. Liu, and J. Zhao (2018). Nanoscale10, 10876.CrossRefGoogle Scholar
  62. 62.
    S. Zhou, W. Pei, J. Zhao, and A. Du (2019). Nanoscale11, 7734.CrossRefGoogle Scholar
  63. 63.
    B. Hammer and J. K. Nørskov (2000). Adv. Catal.45, 71.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron BeamsDalian University of Technology, Ministry of EducationDalianChina

Personalised recommendations