Structural and Electronic Properties of Small Stoichiometric (Li2O2)n Clusters and Relevance to Li–O2 Batteries

  • Zuoliang Gan
  • Xueling LeiEmail author
  • Binpeng Hou
  • Min Luo
  • Shuying Zhong
  • Chuying Ouyang
Original paper


Stoichiometric (Li2O2)n clusters (n = 1–6) were systematically studied by density functional theory calculations with hybrid B3LYP functional. The most stable structures of these clusters are triplet except for the Li2O2 monomer. In the Li2O2 monomer, the closed shell singlet is strongly favored. There are superoxide-like characteristics in terms of bond lengths and spin in the stoichiometric peroxide lithium clusters, which may have implications for the formation and decomposition of peroxide lithium in Li–O2 batteries. Furthermore, the growth process of the lowest energy structures of (Li2O2)n clusters is “ring-like” (n = 2) → “rectangle-like” (n = 3,4) → “Y-like” (n = 5) → “disc-like” (n = 6) feature, this growth pattern is in good agreement with the experimental observation at the initial phase of discharge in the Li–O2 battery. In addition, the values of energy gaps for the (Li2O2)n clusters are much smaller than the band gap of bulk phase, and thus the (Li2O2)n cluster can enhance the electron conductivity in the peroxide lithium. The frontier molecular orbitals analysis indicates that there are π* antibonding on the surface of (Li2O2)n clusters, making their structures more stable. Finally, the PES of (Li2O2)n clusters have been simulated, we hope that our simulated PES can be compared with future experimental data.


(Li2O2)n cluster Ground state structure Electronic properties Li–O2 batteries, DFT calculations 



The authors thank the National Science Foundation of China (Grant No. 11764019) for financial support of the current work.


  1. 1.
    P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon (2012). Nat. Mater.11, 19.CrossRefGoogle Scholar
  2. 2.
    J. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu, and K. Amine (2014). Chem. Rev.114, 5611.CrossRefGoogle Scholar
  3. 3.
    M. Armand and J. M. Tarascon (2008). Nature451, 652.CrossRefGoogle Scholar
  4. 4.
    K. M. Abraham and Z. Jiang (1996). J. Electrochem. Soc.143, 1.CrossRefGoogle Scholar
  5. 5.
    Z. Lyu, Y. Zhou, W. Dai, et al. (2017). Chem. Soc. Rev.46, 6046.CrossRefGoogle Scholar
  6. 6.
    J. R. Harding, C. V. Amanchukwu, P. T. Hammond, and Y. Shao-Horn (2015). J. Phys. Chem. C119, 6947.CrossRefGoogle Scholar
  7. 7.
    H. G. Jung, H. S. Kim, J. B. Park, et al. (2012). Nano Lett.12, 4333.CrossRefGoogle Scholar
  8. 8.
    D. Zhai, H. H. Wang, J. Yang, et al. (2013). J. Am. Chem. Soc.135, 15364.CrossRefGoogle Scholar
  9. 9.
    B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, and L. F. Nazar (2013). Energy Environ. Sci.6, 1772.CrossRefGoogle Scholar
  10. 10.
    C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar, and J. Janek (2014). ACS Appl. Mater. Interfaces6, 12083.CrossRefGoogle Scholar
  11. 11.
    K. C. Lau, R. S. Assary, P. Redfern, J. Greeley, and L. A. Curtiss (2012). J. Phys. Chem. C116, 23890.CrossRefGoogle Scholar
  12. 12.
    J. Lv, Y. Wang, L. Zhu, and Y. Ma (2012). J. Chem. Phys.137, 084104.CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun.183, 2063.CrossRefGoogle Scholar
  14. 14.
    Y. Wang, J. Lv, L. Zhu, and Y. Ma (2010). Phys. Rev. B82, 094116.CrossRefGoogle Scholar
  15. 15.
    W. Sun, X. Xia, C. Lu, X. Kuang, and A. Hermann (2018). Phys. Chem. Chem. Phys.20, 23740.CrossRefGoogle Scholar
  16. 16.
    J. Lv, Y. Wang, L. Zhang, H. Lin, J. Zhao, and Y. Ma (2015). Nanoscale7, 10482.CrossRefGoogle Scholar
  17. 17.
    T. Truong and N. Minh (2015). Nanoscale7, 3316.CrossRefGoogle Scholar
  18. 18.
    M. Ju, J. Lv, X. Y. Kuang, et al. (2015). Rsc Adv.5, 6560.CrossRefGoogle Scholar
  19. 19.
    S. F. Li, X. J. Zhao, X. S. Xu, Y. F. Gao, and Z. Zhang (2013). Phys. Rev. Lett.111, 115501.CrossRefGoogle Scholar
  20. 20.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013). Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.Google Scholar
  21. 21.
    A. D. Becke (1993). J. Chem. Phys.98, 5648.CrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, and R. G. Parr (1988). Physical Review B37, 785.CrossRefGoogle Scholar
  23. 23.
    M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon (1982). J. Chem. Phys.77, 3654.CrossRefGoogle Scholar
  24. 24.
    H. W. Wang, X. L. Lei, Z. F. Tian, and C. Y. Ouyang (2017). Solid State Ionics303, 24.CrossRefGoogle Scholar
  25. 25.
    J. S. Hummelshoj, J. Blomqvist, S. Datta, et al. (2010). J. Chem. Phys.132, 071101.CrossRefGoogle Scholar
  26. 26.
    M. D. Radin, J. F. Rodriguez, F. Tian, and D. J. Siegel (2012). J. Am. Chem. Soc.134, 1093.CrossRefGoogle Scholar
  27. 27.
    L. Shi, A. Xu, and T. S. Zhao (2015). Phys. Chem. Chem. Phys.17, 29859.CrossRefGoogle Scholar
  28. 28.
    G. Yang, Y. Wang, and Y. Ma (2014). J. Phys. Chem. Lett.5, 2516.CrossRefGoogle Scholar
  29. 29.
    S. Kang, Y. Mo, S. P. Ong, and G. Ceder (2013). Chem. Mater.25, 3328.CrossRefGoogle Scholar
  30. 30.
    S. Ganapathy, B. D. Adams, G. Stenou, et al. (2014). J. Am. Chem. Soc.136, 16335.CrossRefGoogle Scholar
  31. 31.
    X. L. Lei (2011). J. Clust. Sci.22, 159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Laboratory of Computational Materials PhysicsJiangxi Normal UniversityNanchangChina

Personalised recommendations