Temperature/Solvent-Induced Two Magnetic Nickel Coordination Compounds with 5-Aminodiacetic Isophthalate

  • Xingxin Tu
  • Hongjuan Chen
  • Shaowei ZhangEmail author
  • Pengtao MaEmail author
Original Paper


The reaction of Ni(OAc)2·4H2O and 5-aminodiacetic isophthalate (H4adip) in the aqueous solution to produce a discrete nickel coordination compound, {[Ni1.5(H2O)9][Ni(adip)(H2O)3][Ni1.5(adip)(H2O)5]·10H2O}2 (1), whereas another nickel compound was isolated by assembling the same reactants at 80 °C in the mixed solvents of H2O and DMA, {[Ni(H2O)6][Ni3(adip)2(H2O)8]·7.5H2O}2 (2). Both 1 and 2 were structurally characterized by single-crystal X-ray diffraction, and other methods. The skeleton unit of 1 consisted of five crystallographically independent Ni2+ ions and two types of adip4− ligands, and the adjacent units were further generated a 3D supramolecular architecture through hydrogen bonds and π···π stacking interactions. Analogously, four types of six-coordinated Ni2+ ions and two kinds of adip4− ligands in 2 also formed a 3D supramolecular structure by hydrogen bonds and π···π stacking interactions. Moreover, the magnetic properties of 1 and 2 had been examined, and the results suggested that the presence of antiferromagnetic interactions among Ni2+ ions in both compounds.


Coordination compound Crystal structure Magnetism Nickel 



This work was supported by the National Natural Science Foundation of China (21601058), the Natural Science Foundation of Hunan Province (2018JJ3146), Hunan Provincial Innovation Foundation for Postgraduate (CX2018B672), and Hunan University of Science and Technology (E51677).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1726_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2553 kb)
10876_2019_1726_MOESM2_ESM.pdf (162 kb)
Supplementary material 2 (PDF 162 kb)
10876_2019_1726_MOESM3_ESM.pdf (178 kb)
Supplementary material 3 (PDF 178 kb)


  1. 1.
    P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, and X.-M. Chen (2017). Science356, 1193.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    S. Zhang, W. Shi, and P. Cheng (2017). Coord. Chem. Rev.352, 108.CrossRefGoogle Scholar
  3. 3.
    J. Dong, P. Cui, P.-F. Shi, P. Cheng, and B. Zhao (2015). J. Am. Chem. Soc.137, 15988.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    S.-L. Li, M. Han, Y. Zhang, G.-P. Li, M. Li, G. He, and X.-M. Zhang (2019). J. Am. Chem. Soc.141, 12663.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    J.-H. Wang, Y. Zhang, M. Li, S. Yan, D. Li, and X.-M. Zhang (2017). Angew. Chem. Int. Ed.56, 6478.CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H.-C. Zhou (2018). Coord. Chem. Rev.354, 28.CrossRefGoogle Scholar
  7. 7.
    H. Xu, C.-S. Cao, H.-S. Hu, S.-B. Wang, J.-C. Liu, P. Cheng, N. Kaltsoyannis, J. Li, and B. Zhao (2019). Angew. Chem. Int. Ed.58, 6022.CrossRefGoogle Scholar
  8. 8.
    S. Zhang and P. Cheng (2016). Chem. Rec.16, 2077.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Q. Ba, J. Qian, and C. Zhang (2019). J. Clust. Sci.30, 747.CrossRefGoogle Scholar
  10. 10.
    S.-J. Liu, C. Cao, C.-C. Xie, T.-F. Zheng, X.-L. Tong, J.-S. Liao, J.-L. Chen, H.-R. Wen, Z. Chang, and X.-H. Bu (2016). Dalton Trans.45, 9209.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    J. Gu, Y. Cui, X. Liang, J. Wu, D. Lv, and A. M. Kirillov (2016). Cryst. Growth Des.16, 4658.CrossRefGoogle Scholar
  12. 12.
    K. Liu, X. Zhang, X. Meng, W. Shi, P. Cheng, and A. K. Powell (2016). Chem. Soc. Rev.45, 2423.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-Y. Su (2014). Chem. Soc. Rev.43, 6011.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    J.-Y. Zou, L. Li, S.-Y. You, H.-M. Cui, Y.-W. Liu, K.-H. Chen, Y.-H. Chen, J.-Z. Cui, and S.-W. Zhang (2018). Dyes Pigm.159, 429.CrossRefGoogle Scholar
  15. 15.
    Z.-L. Wu, C.-H. Wang, B. Zhao, J. Dong, F. Lu, W.-H. Wang, W.-C. Wang, G.-J. Wu, J.-Z. Cui, and P. Cheng (2016). Angew. Chem. Int. Ed.55, 4938.CrossRefGoogle Scholar
  16. 16.
    H.-L. Wang, L.-B. Sheng, H.-H. Zou, K. Wang, B. Li, M.-S. Chen, and F.-P. Liang (2018). J. Clust. Sci.29, 1313.CrossRefGoogle Scholar
  17. 17.
    J.-Y. Zou, L. Li, S.-Y. You, Y.-W. Liu, H.-M. Cui, K.-H. Chen, and S.-W. Zhang (2019). J. Inorg. Organomet. Polym. Mater.29, 359.CrossRefGoogle Scholar
  18. 18.
    J. Li, R. Wan, H. Li, Y. Liu, S. Zhang, and P. Ma (2019). J. Mol. Struct.1181, 142.CrossRefGoogle Scholar
  19. 19.
    S.-Y. Zhang, Z.-Y. Wang, J. Gao, K. Wang, E. Gianolio, S. Aime, W. Shi, Z. Zhou, P. Cheng, and M. J. Zaworotko (2019). Chem5, 1609.CrossRefGoogle Scholar
  20. 20.
    Y. Wang, P. Xu, Q. Xie, Q.-Q. Ma, Y.-H. Meng, Z.-W. Wang, S. Zhang, X.-J. Zhao, J. Chen, and Z.-L. Wang (2016). Chem. Eur. J.22, 10459.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    C.-S. Liu, Z.-H. Zhang, M. Chen, H. Zhao, F.-H. Duan, D.-M. Chen, M.-H. Wang, S. Zhang, and M. Du (2017). Chem. Commun.53, 3941.CrossRefGoogle Scholar
  22. 22.
    S.-D. Su, X.-M. Ou-Yang, K.-K. Guo, Q.-M. Lin, Y. Li, K. Wang, S.-Y. Luo, and F.-P. Liang (2019). J. Clust. Sci.30, 863.CrossRefGoogle Scholar
  23. 23.
    L. Ungur, S.-Y. Lin, J. Tang, and L. F. Chibotaru (2014). Chem. Soc. Rev.43, 6894.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    S. Zhang, H. Li, E. Duan, Z. Han, L. Li, J. Tang, W. Shi, and P. Cheng (2016). Inorg. Chem.55, 1202.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Y.-X. Wang, Y. Ma, Y. Chai, W. Shi, Y. Sun, and P. Cheng (2018). J. Am. Chem. Soc.140, 7795.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    D.-M. Chen, C.-X. Sun, C.-S. Liu, and M. Du (2018). Inorg. Chem.57, 7975.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Z. Shao, C. Huang, J. Dang, Q. Wu, Y. Liu, J. Ding, and H. Hou (2018). Chem. Mater.30, 7979.CrossRefGoogle Scholar
  28. 28.
    H. Wang, W. Meng, J. Wu, J. Ding, H. Hou, and Y. Fan (2016). Coord. Chem. Rev.307, 130.CrossRefGoogle Scholar
  29. 29.
    X. Zhao, S. Zhang, J. Yan, L. Li, G. Wu, W. Shi, G. Yang, N. Guan, and P. Cheng (2018). Inorg. Chem.57, 5030.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    S. Zhang and P. Cheng (2016). ChemPlusChem81, 811.CrossRefGoogle Scholar
  31. 31.
    X. Meng, W. Shi, and P. Cheng (2019). Coord. Chem. Rev.378, 134.CrossRefGoogle Scholar
  32. 32.
    M. Sun, S. Zhang, J. Zhang, W. Xia, J. Chen, and X. Yu (2019). J. Coord. Chem.72, 1899.CrossRefGoogle Scholar
  33. 33.
    X.-Y. Zheng, X.-J. Kong, Z. Zheng, L.-S. Long, and L.-S. Zheng (2018). Acc. Chem. Res.51, 517.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    S. Ning, H. Chen, S. Zhang, and P. Cheng (2018). Polyhedron155, 457.CrossRefGoogle Scholar
  35. 35.
    P. Chen, S. Zhang, J. Zhang, W. Xia, and X. Yu (2019). J. Coord. Chem.72, 239.CrossRefGoogle Scholar
  36. 36.
    S.-J. Liu, C. Cao, F. Yang, M.-H. Yu, S.-L. Yao, T.-F. Zheng, W.-W. He, H.-X. Zhao, T.-L. Hu, and X.-H. Bu (2016). Cryst. Growth Des.16, 6776.CrossRefGoogle Scholar
  37. 37.
    L. Li, J.-Y. Zou, S.-Y. You, Y.-W. Liu, H.-M. Cui, and S.-W. Zhang (2019). Dyes Pigm. Scholar
  38. 38.
    B. Zheng, X. Luo, Z. Wang, S. Zhang, R. Yun, L. Huang, W. Zeng, and W. Liu (2018). Inorg. Chem. Front.5, 2355.CrossRefGoogle Scholar
  39. 39.
    J.-Y. Zou, L. Li, S.-Y. You, Y.-W. Liu, H.-M. Cui, J.-Z. Cui, and S.-W. Zhang (2018). Dalton Trans.47, 15694.PubMedCrossRefGoogle Scholar
  40. 40.
    B. Zheng, H. Wang, Z. Wang, N. Ozaki, C. Hang, X. Luo, L. Huang, W. Zeng, M. Yang, and J. Duan (2016). Chem. Commun.52, 12988.CrossRefGoogle Scholar
  41. 41.
    Z. Tang, H. Chen, Y. Zhang, B. Zheng, S. Zhang, and P. Cheng (2019). Cryst. Growth Des.19, 1172.CrossRefGoogle Scholar
  42. 42.
    W. Xu, Z. Shao, C. Huang, R. Xu, B. Dong, and H. Hou (2019). Inorg. Chem.58, 3959.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Y. Xie, S. Ning, Y. Zhang, Z. Tang, S. Zhang, and R. Tang (2018). Dyes Pigm.150, 36.CrossRefGoogle Scholar
  44. 44.
    S.-L. Yao, S.-J. Liu, X.-M. Tian, T.-F. Zheng, C. Cao, C.-Y. Niu, Y.-Q. Chen, J.-L. Chen, H. Huang, and H.-R. Wen (2019). Inorg. Chem.58, 3578.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    R.-X. Yao, X. Cui, J. Wang, and X.-M. Zhang (2015). Chem. Commun.51, 5108.CrossRefGoogle Scholar
  46. 46.
    S.-Q. Lu, K. Fang, Y.-Y. Liu, M.-X. Li, S.-J. Liu, and X. He (2018). CrystEngComm20, 5045.CrossRefGoogle Scholar
  47. 47.
    S.-J. Liu, X.-R. Xie, T.-F. Zheng, J. Bao, J.-S. Liao, J.-L. Chen, and H.-R. Wen (2015). CrystEngComm17, 7270.CrossRefGoogle Scholar
  48. 48.
    H. Chen, P. Fan, X. Tu, H. Min, X. Yu, X. Li, J.-L. Zeng, S. Zhang, and P. Cheng (2019). Chem. Asian J.14, 3611.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    S. A. Sotnik, R. A. Polunin, M. A. Kiskin, A. M. Kirillov, V. N. Dorofeeva, K. S. Gavrilenko, I. L. Eremenko, V. M. Novotortsev, and S. V. Kolotilov (2015). Inorg. Chem.54, 5169.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    M. N. Kopylovich, E. A. Tronova, M. Haukka, A. M. Kirillov, V. Y. Kukushkin, J. J. R. Fraústo da Silva, and A. J. L. Pombeiro (2007). Eur. J. Inorg. Chem.2007, 4621.CrossRefGoogle Scholar
  51. 51.
    M. V. Kirillova, A. M. Kirillov, M. F. C. Guedes da Silva, M. N. Kopylovich, J. J. R. Fraústo da Silva, and A. J. L. Pombeiro (2008). Inorg. Chim. Acta361, 1728.CrossRefGoogle Scholar
  52. 52.
    S. Zhang, J. Ma, X. Zhang, E. Duan, and P. Cheng (2015). Inorg. Chem.54, 586.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    S. Zhang, W. Shi, L. Li, E. Duan, and P. Cheng (2014). Inorg. Chem.53, 10340.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    S. Zhang, E. Duan, Z. Han, L. Li, and P. Cheng (2015). Inorg. Chem.54, 6498.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    F.-L. Ma, L. Jiang, M.-Y. Chen, S.-Q. Wu, D. Zhang, R. Feng Han, and M.-C. Hong (2011). Cryst. Growth Des.11, 3273.CrossRefGoogle Scholar
  56. 56.
    J. Ma, F.-L. Jiang, L. Chen, M.-Y. Wu, S.-Q. Zhang, K.-C. Xiong, D. Han, and M.-C. Hong (2012). CrystEngComm14, 6055.CrossRefGoogle Scholar
  57. 57.
    Y. Xu, B. Chen, Y. Gong, D. Yuan, F. Jiang, and M. Hong (2006). J. Mol. Struct.789, 220.CrossRefGoogle Scholar
  58. 58.
    Y. Xu, D. Yuan, B. Wu, L. Han, M. Wu, F. Jiang, and M. Hong (2006). Cryst. Growth Des.6, 1168.CrossRefGoogle Scholar
  59. 59.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr.42, 339.CrossRefGoogle Scholar
  60. 60.
    G. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem.71, 3.CrossRefGoogle Scholar
  61. 61.
    L. Liu, C. Huang, X. Xue, M. Li, H. Hou, and Y. Fan (2015). Cryst. Growth Des.15, 4507.CrossRefGoogle Scholar
  62. 62.
    F. Guo, B. Zhu, M. Liu, X. Zhang, J. Zhang, and J. Zhao (2013). CrystEngComm15, 6191.CrossRefGoogle Scholar
  63. 63.
    J. Cano, G. De Munno, F. Lloret, and M. Julve (2000). Inorg. Chem.39, 1611.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Y.-P. Li, Y. Chai, G.-P. Yang, H.-H. Miao, L. Cui, Y.-Y. Wang, and Q.-Z. Shi (2014). Dalton Trans.43, 10947.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    S. Zhang, H. Chen, H. Tian, X. Li, and X. Yu (2017). Inorg. Chem. Commun.86, 87.CrossRefGoogle Scholar
  66. 66.
    Q. Chu, Z. Su, J. Fan, T.-A. Okamura, G.-C. Lv, G.-X. Liu, W.-Y. Sun, and N. Ueyama (2011). Cryst. Growth Des.11, 3885.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations