Advertisement

Plasmon Based Cellulose Nano Fibril–PVA Film for Effective Ultra Violet Radiation Blocking

  • Jeena Thomas
  • Prakash PeriakaruppanEmail author
  • Vinoy Thomas
  • Archana Raj
  • Titu Thomas
  • Jasmine Jose
  • M. S. Latha
  • Rani Abraham
  • Jeyaprabha Balasubramanian
Original Paper
  • 15 Downloads

Abstract

Recent years have witnessed significant interest in biodegradable and transparent ultraviolet (UV) protecting films from renewable resources. In the present paper, preparation, characterization and evaluation of UV radiation blocking capability of transparent and flexible cellulose nano fibril (CNF)–poly vinyl alcohol (PVA) films are described. Synthesized films exhibited good transparency in the visible region and UV blocking ability. Addition of plasmonic silver (~ 22 nm) to the films lead to complete blocking of UV radiations. Synthesized films were highly stable for a long exposure to intense sunlight. The defined methods show a straightforward procedure for the fabrication of environment friendly UV-radiation blocking films for industrial/commercial/textile applications.

Keywords

Composites Cellulose Nano fibril UV blocking films 

Notes

Acknowledgements

The authors are grateful to Science Engineering Research Board (SERB) (EMR/2017/000178) (Govt. of India) Department of Science and Technology (DST) (SR/FST/college 202/2014), KSCSTE (607/2015/KSCSTE) Government of Kerala for financial assistance in the form of research grants.

Compliance with Ethical Standards

Conflicts of interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    S. C. Hess, F. A. Permatasari, H. Fukazawa, E. M. Schneider, R. Balgisr, T. Ogi, K. Okuyama, and W. J. Stark (2017). J. Mater. Chem. A5, 5187.  https://doi.org/10.1039/C7TA00397H.CrossRefGoogle Scholar
  2. 2.
    M. Parit, P. Saha, V. A. Davis, and Z. Jiang (2018). ACS Omega3, 10679.  https://doi.org/10.1021/acsomega.8b01345.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    B. Mahltig, H. Böttcher, K. Rauch, R. Nitsche, and T. Fritz (2005). Thin Solid Films485, 108.  https://doi.org/10.1016/j.tsf.2005.03.056.CrossRefGoogle Scholar
  4. 4.
    J. Jasmine, T. Vinoy, R. Archana, J. Jancy, M. M. Raji, V. Vrinda, R. Ibrahimkutty, M. Sebastian, A. Rani, and A. Mujeeb (2019). J. Appl. Polym. Sci.136, 48272.  https://doi.org/10.1002/app.48272.CrossRefGoogle Scholar
  5. 5.
    M. Lan, Y. Zhang, J. Cao, and J. Yao (2013). Bio Resources9, 210.  https://doi.org/10.15376/biores.9.1.210-217.CrossRefGoogle Scholar
  6. 6.
    J. Jasmine, T. Vinoy, V. Vrinda, A. Rani, and S. Susan (2019). J. Sci. Adv. Mater. Devices.  https://doi.org/10.1016/j.jsamd.2019.06.003.CrossRefGoogle Scholar
  7. 7.
    Z. Karim, M. Hakalahti, T. Tammelin, and A. P. Mathew (2017). RSC Adv.7, 5232.  https://doi.org/10.1039/c6ra25707k.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    A. S. Ertürk (2019). J. Clust. Sci.30, 1363.  https://doi.org/10.1007/s10876-019-01634-4.CrossRefGoogle Scholar
  10. 10.
    X. Du, Z. Zhang, W. Liu, and Y. Deng (2017). Nano Energy35, 299.  https://doi.org/10.1016/j.nanoen.2017.04.001.CrossRefGoogle Scholar
  11. 11.
    T. D. Gadim, F. J. Loureiro, C. Vilela, N. R. Navarro, A. J. Silvestre, and C. S. Freire (2017). Electro. Chim. Acta233, 52.  https://doi.org/10.1016/j.electacta.2017.02.145.CrossRefGoogle Scholar
  12. 12.
    H. Barabadi, M. A. Mahjoubl, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci.30, 259.  https://doi.org/10.1007/s10876-018-01491-7.CrossRefGoogle Scholar
  13. 13.
    N. Mahfoudhi and S. Boufi (2017). Cellulose24, 1171.  https://doi.org/10.1007/s10570-017-1194-0.CrossRefGoogle Scholar
  14. 14.
    T. Lu, H. Pan, J. Ma, Y. Li, S. Bokhari, W. Jiang, and S. D. Zhu (2017). ACS. Appl. Mater. Inter.9, 18231.  https://doi.org/10.1021/acsami.7b04590.CrossRefGoogle Scholar
  15. 15.
    D. B. Rasale, I. Maity, and A. K. Das (2013). J. Clust. Sci.24, 1163.  https://doi.org/10.1007/s10876-013-0606-z.CrossRefGoogle Scholar
  16. 16.
    X. Niu, Y. Liu, G. Fang, C. Huang, and O. H. Roja (2018). Biomacromolecules19, 4565.  https://doi.org/10.1021/acs.biomac.8b01252.CrossRefPubMedGoogle Scholar
  17. 17.
    M. A. Mariño, C. A. Rezende, and L. Tasic (2018). Cellulose25, 5739.  https://doi.org/10.1007/s10570-018-1977-y.CrossRefGoogle Scholar
  18. 18.
    W. Yang, Y. Gao, C. Zuo, Y. Deng, and H. Dai (2019). Carbohydr. Polymers223, 115050.  https://doi.org/10.1016/j.carbpol.2019.115050.CrossRefGoogle Scholar
  19. 19.
    T. N. J. I. Edison and M. G. Sethuraman (2017). J. Clust. Sci.28, 3139.  https://doi.org/10.1007/s10876-017-1284-z.CrossRefGoogle Scholar
  20. 20.
    B. Vellaichamy and P. Periakaruppan (2017). New J. Chem.41, 7123.  https://doi.org/10.1039/c7nj01085k.CrossRefGoogle Scholar
  21. 21.
    V. Balakumar and P. Prakash (2016). RSC Adv.6, 35778.  https://doi.org/10.1039/c6ra04381j.CrossRefGoogle Scholar
  22. 22.
    B. Vellaichamy, P. Prakash, and J. Thomas (2018). Ultrason. Sonochem.48, 362.  https://doi.org/10.1016/j.ultsonch.2018.05.012.CrossRefPubMedGoogle Scholar
  23. 23.
    J. Thomas, P. Periakaruppan, V. Thomas, J. John, S. Mathew, T. Thomas, J. Jose, I. Rejeena, and A. Mujeeb (2018). RSC Adv.8, 41288.  https://doi.org/10.1039/c8ra08893d.CrossRefGoogle Scholar
  24. 24.
    K. V. Arun Kumar, M. S. Sajna, V. Thomas, C. Joseph, and N. V. Unnikrishnan (2014). Plasmonics9, 631.  https://doi.org/10.1007/s11468-014-9674-7.CrossRefGoogle Scholar
  25. 25.
    L. Lin, J. Chen, Z. Wang, Z. Feng, F. Huan, B. Zheng, L. Huang, Z. Yu, and Z. Zheng (2017). Mater. Res. Bull.93, 31.  https://doi.org/10.1039/c6ta07984a.CrossRefGoogle Scholar
  26. 26.
    Y. Li, K. Chang, E. Shangguan, D. Guo, W. Zhou, Y. Hou, H. Tang, B. Li, and Z. Chang (2019). Nanoscale11, 1887.  https://doi.org/10.1039/c8nr08511k.CrossRefPubMedGoogle Scholar
  27. 27.
    C. Huo, H. Jiang, Y. Lu, S. Han, F. Jia, Y. Zeng, P. Cao, W. Liu, W. Xu, X. Liu, and D. Zhu (2019). Mater. Res. Bull.111, 17.  https://doi.org/10.1016/j.materresbull.2018.10.037.CrossRefGoogle Scholar
  28. 28.
    L. S. Ying, W. Shen, and Z. Gao (2015). Chem. Soc. Rev.44, 362.  https://doi.org/10.1039/c4cs00269e.CrossRefGoogle Scholar
  29. 29.
    S. J. Antti, M. Visanko, J. P. Heiskanen, and H. Liimatainen (2016). J. Mater. Chem. A4, 6368.  https://doi.org/10.1039/c6ta00900j.CrossRefGoogle Scholar
  30. 30.
    F. Attia, J. P. Nour, and O. H. Hyunchul (2018). Appl. Surface Sci.458, 425.  https://doi.org/10.1016/j.apsusc.2018.07.066.CrossRefGoogle Scholar
  31. 31.
    Z. Jin, W. Lei, J. Chen, D. Liu, B. Tang, J. Li, and X. Wang (2018). Polymer148, 101.  https://doi.org/10.1016/j.polymer.2018.06.029.CrossRefGoogle Scholar
  32. 32.
    G. Rudko, A. Kovalchuk, V. Fediv, W. M. Chen, and I. A. Buyanova (2015). Nanoscale Res. Lett.10, 81.  https://doi.org/10.1186/s11671-015-0787-5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    F. Pan, L. Chen, Y. Jiang, L. Xiong, L. Min, J. Xie, J. Qi, H. Xiao, Y. Chen, and C. F. De Hoop (2018). Int. J. Biol. Macromol.  https://doi.org/10.1016/j.ijbiomac.2018.07.189.CrossRefPubMedGoogle Scholar
  34. 34.
    H. S. Roy, M. Y. A. Mollah, Md M Islam, and Md A B H Susan (2018). Polym. Bull..  https://doi.org/10.1007/s00289-018-2355-5.CrossRefGoogle Scholar
  35. 35.
    M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri (2014). Appl. Phys. Lett.104, 041103.  https://doi.org/10.1063/1.4863202.CrossRefGoogle Scholar
  36. 36.
    A. L. Leite, C. D. Zanon, and F. C. Menegalli (2017). Carbohydr. Polym.157, 962.  https://doi.org/10.1016/j.carbpol.2016.10.048.CrossRefPubMedGoogle Scholar
  37. 37.
    T. Abitbol, D. Kam, Y. L. Kalisman, D. G. Gray, and O. Shoseyov (2018). Langmuir34, 3925.  https://doi.org/10.1021/acs.langmuir.7b04127.CrossRefPubMedGoogle Scholar
  38. 38.
    J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessaul, and D. G. Gray (1992). Int. J. Biol. Macromol.14, 165.  https://doi.org/10.4236/jbnb.2013.42022.CrossRefGoogle Scholar
  39. 39.
    J. F. Revol, L. Godbout, X. M. Dong, D. G. Gray, and H. G. Chanzy (1994). Liquid Cryst.16, 127.  https://doi.org/10.1023/A:101662433.CrossRefGoogle Scholar
  40. 40.
    D. X. Min, T. Kimura, J. F. Revol, and D. G. Gray (1996). Crystallites. Langmuir12, 2076.  https://doi.org/10.1021/la950133b.CrossRefGoogle Scholar
  41. 41.
    X. Changyan, S. Zhu, C. Xing, D. Li, N. Zhu, and H. Zhou (2015). PloS ONE10, e0122123.  https://doi.org/10.1371/journal.pone.0122123.CrossRefGoogle Scholar
  42. 42.
    A. F. I. Yusra, H. P. S. Khalil, M. S. Hossain, A. Aziz, Y. Davoudpour, R. Dungani, and A. Bhat (2014). Polymer6, 2611.  https://doi.org/10.3390/polym6102611.CrossRefGoogle Scholar
  43. 43.
    Q. Liu, C. Ma, X. P. Liu, Y. P. Wei, C. J. Mao, and J. Zhu (2017). Biosensors Bioelectr.92, 273.  https://doi.org/10.1016/j.bios.2017.02.027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThiagarajar CollegeMaduraiIndia
  2. 2.Center for Functional Materials, Department of PhysicsChristian CollegeChengannurIndia
  3. 3.Department of ChemistryTKMM CollegeNangiarkulangaraIndia
  4. 4.Department of ChemistryChristian CollegeChengannurIndia
  5. 5.Department of Civil EngineeringSethu Institute of TechnologyVirudhunagarIndia

Personalised recommendations