Advertisement

Effect of Nanoemulsification on the Antibacterial and Anti-biofilm Activities of Selected Spice Essential Oils and Their Major Constituents Against Salmonella enterica Typhimurium

  • Anand Prakash
  • Revathy Baskaran
  • Paramasivam Nithyanand
  • Vellingiri VadivelEmail author
Original Paper
  • 26 Downloads

Abstract

In the present study, EOs of commonly used spices i.e. coriander, cumin, fennel, lemongrass and pepper and their major components (linalool, cuminaldehyde, anethole, citral and beta-caryophyllene) were nanoemulsified and investigated for their antibacterial and anti-biofilm activities against Salmonella enterica Typhimurium. The mean droplet size of the nanoemulsion ranged from 16.99 to 165.20 nm for EOs and 22.40 to 223.90 nm for their major compounds. Nanoemulsion of all EOs and their compounds (cuminaldehyde, anethol and citral) were stable for 30 days while phase separation was noticed in linalool and beta-caryophyllene after 5 and 10 days of storage, respectively. Among the investigated samples, citral nanoemulsion showed the highest antibacterial (MIC 0.156%) and anti-biofilm activity (79.9%) and was therefore selected for its application in fresh cut pineapple model. Treatment with citral nanoemulsion on the cut pineapple surface led to 2.57 log CFU/g reduction of the S. enterica Typhimurium population. Scanning electron microscopy revealed reduction of biofilms on the cut pineapple surface upon citral nanoemulsion treatment. Hence, we envisage that citral nanoemulsion can be further explored as natural antibacterial and anti-biofilm agent for food preservation applications.

Keywords

Spice Essential oils Citral Nanoemulsion Antibacterial Salmonella 

Notes

Acknowledgements

Anand Prakash acknowledges Junior Research Fellowship (09/1095/0020/2017-EMR-I) provided by CSIR, New Delhi. Authors acknowledge management of SASTRA Deemed University for their encouragement in this research project.

Compliance with Ethical Standards

Conflict of interest

The authors declared that there is no conflict of interest.

Supplementary material

10876_2019_1720_MOESM1_ESM.docx (448 kb)
Supplementary material 1 (DOCX 448 kb)

References

  1. 1.
    CDC (2014). Centres for Disease Control and Prevention, Estimates of foodborne illness in the United States. http://www.cdc.gov/foodborneburden/estimates-overview.html. Accessed 28 Jan 2019.
  2. 2.
    A. Prakash, R. Baskaran, N. Paramasivam, and V. Vadivel (2018). Food Res. Int.111, 509–523.PubMedCrossRefGoogle Scholar
  3. 3.
    H. Steenackers, K. Hermans, J. Vanderleyden, and S. C. De Keersmaecker (2012). Food Res. Int.45, 502–531.CrossRefGoogle Scholar
  4. 4.
    S. P. Doijad, S. B. Barbuddhe, S. Garg, K. V. Poharkar, D. R. Kalorey, N. V. Kurkure, D. B. Rawool, and T. Chakraborty (2015). PLoS ONE. 10,  https://doi.org/10.1371/journal.pone.0137046.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    B. Prakash and S. Kiran (2016). Curr. Sci.110, 1890–1892.Google Scholar
  6. 6.
    F. Patrignani, L. Siroli, D. I. Serrazanetti, F. Gardini, and R. Lanciotti (2015). Trends Food Sci. Technol.46, 311–319.CrossRefGoogle Scholar
  7. 7.
    P. Adhavan, G. Kaur, A. Princy, and R. Murugan (2017). Ind. Crop Prod.100, 106–116.CrossRefGoogle Scholar
  8. 8.
    J. A. da Cunha, C. de Avila Scheeren, V. P. Fausto, L. D. W. de Melode Melo, B. Henneman, C. P. Frizzo, R. de Almeida Vaucher, A. C. de Vargas, and B. Baldisserotto (2018). Microb. Pathog.124, 116–121.PubMedCrossRefGoogle Scholar
  9. 9.
    S. Burt (2004). Int. J. Food Microbiol.94, 223–253.PubMedCrossRefGoogle Scholar
  10. 10.
    Y. G. Kim, J. H. Lee, G. Gwon, S. I. Kim, J. G. Park, and J. Lee (2016). Sci. Rep.6, 36377.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    P. Ezhilarasi, P. Karthik, N. Chhanwal, and C. Anandharamakrishnan (2013). Food Bioprocess Technol.6, (3), 628–647.CrossRefGoogle Scholar
  12. 12.
    F. Donsi, A. Cuomo, E. Marchese, and G. Ferrari (2014). Innov. Food Sci. Emerg. Technol.22, 212–220.CrossRefGoogle Scholar
  13. 13.
    V. Ghosh, A. Mukherjee, and N. Chandrasekaran (2013). Ultrason. Sonochem.20, 338–344.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    A. Gupta, H. B. Eral, T. A. Hatton, and P. S. Doyle (2016). Soft Matter12, 2826–2841.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    S. Maisanaba, M. Llana-Ruiz Cabello, D. Gutierrez-Praena, S. Pichardo, M. Puerto, A. Prieto, A. Jos, and A. Cameán (2017). Food Rev. Int.33, 447–515.CrossRefGoogle Scholar
  16. 16.
    R. Ribeiro-Santos, M. Andrade, N. R. de Melo, and A. Sanches-Silva (2017). Trends Food Sci. Technol.61, 132–140.CrossRefGoogle Scholar
  17. 17.
    P. S. Negi (2012). Int. J. Food Microbiol.156, 7–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Q. Li, D. X. Kong, R. S. Huang, H. L. Liang, C. G. Xu, and H. Wu (2013). Ind. Crop Prod.47, 92–101.CrossRefGoogle Scholar
  19. 19.
    M. Perricone, E. Arace, M. R. Corbo, M. Sinigaglia, and A. Bevilacqua (2015). Front. Microbiol.6, 76.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    R. Naveed, I. Hussain, A. Tawab, M. Tariq, M. Rahman, S. Hameed, M. S. Mahmood, A. B. Siddique, and M. Iqbal (2013). BMC Complement. Altern. Med.13, 265.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    H. Mith, R. Dure, V. Delcenserie, A. Zhiri, G. Daube, and A. Clinquart (2014). Food Sci. Nutr.2, 403–416.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    F. Anwar, M. Ali, A. I. Hussain, and M. Shahid (2009). Flavour Fragr. J.24, 170–176.CrossRefGoogle Scholar
  23. 23.
    H. Dorman and S. Deans (2000). J. Appl. Microbiol.88, 308–316.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    M. Vazirian, S. T. Kashani, M. R. S. Ardekani, M. Khanavi, H. Jamalifar, M. R. Fazeli, and A. N. Toosi (2012). J. Essent. Oil Res.24, 579–582.CrossRefGoogle Scholar
  25. 25.
    A. J. Choi, C. J. Kim, Y. J. Cho, J. K. Hwang, and C. T. Kim (2011). Food Bioprocess Technol.4, (6), 1119–1126.CrossRefGoogle Scholar
  26. 26.
    L. Salvia-Trujillo, A. M. Rojas-Graiu, R. Solvia-Fortuny, and O. Martin-Belloso (2014). Food Bioprocess Technol.7, (10), 3022–3032.CrossRefGoogle Scholar
  27. 27.
    V. Polychniatou and C. Tzia (2016). Food Bioprocess Technol.9, (5), 882–891.CrossRefGoogle Scholar
  28. 28.
    A. Dammak and P. J. D. A. Sobral (2017). Food Bioprocess Technol.10, (5), 926–939.CrossRefGoogle Scholar
  29. 29.
    S. Jiang, G. Yildiz, J. Ding, J. Andrade, T. M. Rababah, A. Almajwal, M. M. Abulmeaty, and H. Feng (2019). Food Bioprocess Technol.12, (6), 1031–1040.CrossRefGoogle Scholar
  30. 30.
    L. Salvia-Trujillo, A. Rojas-Grau, R. Soliva-Fortuny, and O. Martín-Belloso (2015). Food Hydrocoll.43, 547–556.CrossRefGoogle Scholar
  31. 31.
    CLSI Clinical and Laboratory Standards Institute document M7-A7, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 7th ed (CLSI, Wayne, 2006).Google Scholar
  32. 32.
    P. Nithyanand, R. Thenmozhi, J. Rathna, and S. K. Pandian (2010). Curr. Microbiol.60, 454–460.PubMedCrossRefGoogle Scholar
  33. 33.
    E. H. Chisowa, D. R. Hall, and D. I. Farman (1998). Flavour Fragr. J.13, 29–30.CrossRefGoogle Scholar
  34. 34.
    A. Gil, E. B. de la Fuente, A. E. Lenardis, M. López Pereira, S. A. Suarez, A. Bandoni, C. van Baren, P. Di Leo Lira, and C. M. Ghersa (2002). J. Agric. Food Chem.50, 2870–2877.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    R. Li and Z. T. Jiang (2004). Flavour Fragr. J.19, 311–313.CrossRefGoogle Scholar
  36. 36.
    J. Chandran, K. P. P. Amma, N. Menon, J. Purushothaman, and P. Nisha (2012). Food Sci. Biotechnol.21, 1611–1617.CrossRefGoogle Scholar
  37. 37.
    M. Moghaddam, S. N. K. Miran, A. G. Pirbalouti, L. Mehdizadeh, and Y. Ghaderi (2015). Ind. Crop Prod.70, 163–169.CrossRefGoogle Scholar
  38. 38.
    C. Qian and D. J. McClements (2011). Food Hydrocoll.25, 1000–1008.CrossRefGoogle Scholar
  39. 39.
    D. J. McClements and J. Rao (2011). Crit. Rev. Food Sci. Nutr.51, 285–330.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    J. Wan, S. Zhong, P. Schwarz, B. Chen, and J. Rao (2019). Food Chem.291, 199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    V. Ghosh, S. Saranya, A. Mukherjee, and N. Chandrasekaran (2013). J. NanoSci. Nanotechnol.13, 114–122.PubMedCrossRefGoogle Scholar
  42. 42.
    V. Ghosh, A. Mukherjee, and N. Chandrasekaran (2014). Colloids Surf. B Biointerfaces114, 392–397.PubMedCrossRefGoogle Scholar
  43. 43.
    N. P. Nirmal, R. Mereddy, L. Li, and Y. Sultanbawa (2019). Food Chem.254, 1–7.CrossRefGoogle Scholar
  44. 44.
    A. H. Saberi, Y. Fung, and D. J. McClements (2013). Colloid Interface Sci.391, 95–102.CrossRefGoogle Scholar
  45. 45.
    M. Affandi, T. Julianto, and A. Majeed (2011). Asian J. Pharm. Clin. Res.4, 142–148.Google Scholar
  46. 46.
    H. D. Silva, M. A. Cerqueira, and A. A. Vicente (2015). J. Food Eng.167, 89–98.CrossRefGoogle Scholar
  47. 47.
    M. I. Guerra-Rosas, J. Morales-Castro, L. A. Ochoa-Martinez, L. Salvia-Trujillo, and O. Martin-Belloso (2016). Food Hydrocol.52, 438–446.CrossRefGoogle Scholar
  48. 48.
    D. Wu, J. Lu, S. Zhong, P. Schwarz, B. Chen, and J. Rao (2019). Food Funct.10, 2817–2827.PubMedCrossRefGoogle Scholar
  49. 49.
    S. Baboota, S. Shakeel, A. Ahuja, J. Ali, and S. Shafiq (2007). Acta Pharm.57, 315–332.PubMedCrossRefGoogle Scholar
  50. 50.
    L. Salvia-Trujillo, M. A. Rojas-Grau, R. Soliva-Fortuny, and O. Martín-Belloso (2013). Food Hydrocoll.30, 401–407.CrossRefGoogle Scholar
  51. 51.
    T. J. Wooster, M. Golding, and P. Sanguansri (2008). Langmuir24, 12758–12765.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    V. Ryu, D. J. McClements, M. G. Corradini, and L. McLandsborough (2018). Food Chem.245, 104–111.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    R. Moghimi, L. Ghaderi, H. Rafati, A. Aliahmadi, and D. J. McClements (2016). Food Chem.194, 410–415.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    M. K. Anwer, S. Jamil, E. O. Ibnouf, and F. Shakeel (2014). J. Oleo Sci.63, 347–354.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    H. Majeed, F. Liu, J. Hategekimana, H. R. Sharif, J. Qi, B. Ali, Y. Y. Bian, J. Ma, W. Yokoyama, and F. Zhong (2016). Food Chem.197, 75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    N. Terjung, M. Loffler, M. Gibis, J. Hinrichs, and J. Weiss (2012). Food Funct.3, 290–301.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    S. Srey, I. K. Jahid, and S. D. Ha (2013). Food Control31, 572–585.CrossRefGoogle Scholar
  58. 58.
    D. Vazquez-Sanchez, M. L. Cabo, and J. J. Rodríguez-Herrera (2015). Food Sci. Technol. Int.21, 559–570.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Z. Lou, J. Chen, F. Yu, H. Wang, X. Kou, C. Ma, and S. Zhu (2017). LWT Food Sci. Technol.80, 371–377.CrossRefGoogle Scholar
  60. 60.
    N. Shahabi, H. Tajik, M. Moradi, M. Forough, and P. Ezati (2017). Int. J. Food Sci. Technol.52, 1645–1652.CrossRefGoogle Scholar
  61. 61.
    S. da Silva Gundel, M. E. de Souza, P. M. Quatrin, B. Klein, R. Wagner, A. Gundel, R. de Almeida Vaucher, R. C. V. Santos, and A. F. Ourique (2018). Microb. Pathog.118, 268–276.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    R. Moghimi, A. Aliahmadi, H. Rafati, H. R. Abtahi, S. Amini, and M. M. Feizabadi (2018). J. Mol. Liq.265, 765–770.CrossRefGoogle Scholar
  63. 63.
    J. B. Park, J. H. Kang, and K. B. Song (2019). Food Control100, 17–23.CrossRefGoogle Scholar
  64. 64.
    J. Li, J. W. Chang, M. Saenger, and A. Deering (2017). Food Chem.232, 191–197.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anand Prakash
    • 1
  • Revathy Baskaran
    • 2
  • Paramasivam Nithyanand
    • 3
  • Vellingiri Vadivel
    • 1
    Email author
  1. 1.Chemical Biology Lab (ASK-II), School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia
  2. 2.Department of Fruit and Vegetable TechnologyCSIR-Central Food Technological Research Institute (CFTRI)MysoreIndia
  3. 3.Biofilm Biology Lab, School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia

Personalised recommendations