Recent Progress on Pyrite FeS2 Nanomaterials for Energy and Environment Applications: Synthesis, Properties and Future Prospects

  • Gurpreet Kaur
  • Manjot Kaur
  • Anup Thakur
  • Akshay KumarEmail author
Review Paper


Solar energy is the extreme realistic solution to regularly growing energy crisis. Several solar energy conversion systems have been in harnessing into useful form of energy. The performance of solar energy devices depends on the properties of nanomaterial used for solar energy conversion. As the primary sources of energy are depleted increasingly and give rise to the energy and environmental crisis for humankind. Therefore, exploration of FeS2 pyrite nanostructures for energy and environment applications are carried out in this review. This review focuses on the synthesis, functionalization as well as applications of FeS2 nanomaterial. The shape and size control have been governed by the synthesis methods such as hydrothermal method, sulfidation, solvothermal method and hot injection method. All these methods are discussed in detail. The review involves overview of FeS2, also outlining the structure, basic magnetic, optical and transport properties. Then the comprehensive study regarding modification of FeS2 nanostructures is also illustrated. The well synthesized FeS2 nanomaterials have been used for basic building blocks of functional systems and their application in photovoltaics and photocatalysis is briefly reviewed. Lastly, various future strategies and trends in these research areas are outlined.


Iron pyrite Solar cells Environment remediation Nanomaterials Battery applications 



The authors acknowledge the financial support from Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India under Project No. 34/14/41/2014-BRNS. This work was supported by DST Project No. EMR/2016/002815.


  1. 1.
    A. Douglas, R. Carter, L. Oakes, K. Share, A. P. Cohn, and C. L. Pint (2015). ACS Nano9, 11156.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    W. Liu, L. Xu, X. Li, C. Shen, S. Rashid, Y. Wen, W. Liu, and X. Wu (2015). RSC Adv.5, 2449.CrossRefGoogle Scholar
  3. 3.
    Y. C. Wang, D. Y. Wang, Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou, and C. W. Chen (2013). Angew. Chemie Int. Ed.52, 6694.CrossRefGoogle Scholar
  4. 4.
    D. Jasion, J. M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, and K. C. Leonard (2015). ACS Catal.5, 6653.CrossRefGoogle Scholar
  5. 5.
    J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray (2011). Energy Environ. Sci.4, 3573.CrossRefGoogle Scholar
  6. 6.
    R. Balachandar, P. Gurumoorthy, N. Karmegam, H. Barabadi, R. Subbaiya, K. Anand, P. Boomi, and M. Saravanan (2019). J. Clust. Sci.. Scholar
  7. 7.
    A. Khatua, E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, A. Naik, M. Saravanan, H. Barabadi, A. Prasad, L. Ghosh, B. Paul, and R. Meena (2019). J. Clust. Sci.. Scholar
  8. 8.
    H. Barabadi, B. Tajani, M. Moradi, K. D. Kamali, R. Meena, S. Honary, M. A. Mahjoub, and M. Saravanan (2019). J. Clust. Sci.30, 843.CrossRefGoogle Scholar
  9. 9.
    K. Mallikarjuna, M. K. Kumar, B. V. S. Reddy, and H. Kim (2019). J. Clust. Sci.30, 449.CrossRefGoogle Scholar
  10. 10.
    H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci.30, 259.CrossRefGoogle Scholar
  11. 11.
    H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. G. Ghomi, and M. Saravanan (2019). J. Clust. Sci.. Scholar
  12. 12.
    K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, and M. Saravanan (2019). J. Clust. Sci.. Scholar
  13. 13.
    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci.30, 715.CrossRefGoogle Scholar
  14. 14.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chem. Rev.105, 1025.CrossRefGoogle Scholar
  15. 15.
    X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. Zhao, and J. Becker (2005). J. Nanosci. Nanotechnol.5, 1408.CrossRefGoogle Scholar
  16. 16.
    B. Bhushan (ed.) Springer handbook nanotechnology (Springer, Berlin, 2004), pp. 763–787.Google Scholar
  17. 17.
    M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol.6, 17.CrossRefGoogle Scholar
  18. 18.
    J. Guo, S. Liang, Y. Shi, B. Li, C. Hao, X. Wang, and T. Ma (2015). RSC Adv.5, 72553.CrossRefGoogle Scholar
  19. 19.
    A. Tian, Q. Xu, X. Shi, H. Yang, X. Xue, J. You, X. Wang, C. Dong, X. Yan, and H. Zhou (2015). RSC Adv.5, 62724.CrossRefGoogle Scholar
  20. 20.
    C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Grenèche, H. Lecoq, L. Mouton, M. Giraud, and C. Tard (2014). ACS Catal.4, 681.CrossRefGoogle Scholar
  21. 21.
    J. B. Goodenough (1978). Mater. Res. Bull.13, 1305.CrossRefGoogle Scholar
  22. 22.
    L. Labiadh, M. A. Oturan, M. Panizza, N. B. Hamadi, and S. Ammar (2015). J. Hazard. Mater.297, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Y. Zhang, H. P. Tran, I. Hussain, Y. Zhong, and S. Huang (2015). Chem. Eng. J.279, 396.CrossRefGoogle Scholar
  24. 24.
    S. Nakamura and A. Yamamoto (2001). Sol. Energy Mater. Sol. Cells65, 79.CrossRefGoogle Scholar
  25. 25.
    H. A. Macpherson and C. R. Stoldt (2012). ACS Nano6, 8940.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    J. A. Darr, J. Zhang, N. M. Makwana, and X. Weng (2017). Chem. Rev.117, 11125.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    E. T. Allen, J. L. Crenshaw, J. Johnston, and E. S. Larsen (1912). Am. J. Sci. Ser. sV33, 169.CrossRefGoogle Scholar
  28. 28.
    K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew Elsevier, 2013).Google Scholar
  29. 29.
    R. Wu, Y. F. Zheng, X. G. Zhang, Y. F. Sun, J. B. Xu, and J. K. Jian (2004). J. Cryst. Growth266, 523.CrossRefGoogle Scholar
  30. 30.
    X. Qiu, M. Liu, T. Hayashi, M. Miyauchi, and K. Hashimoto (2013). Chem. Commun.49, 1232.CrossRefGoogle Scholar
  31. 31.
    L. Zhu, B. Richardson, J. Tanumihardja, and Q. Yu (2012). CrystEngComm14, 4188.CrossRefGoogle Scholar
  32. 32.
    J. Zou and J. C. Gao Materials research (Trans Tech Publications, Zürich, 2009), pp. 459–462.Google Scholar
  33. 33.
    Y. Wang, X. Qian, W. Zhou, H. Liao, and S. Cheng (2014). RSC Adv.4, 36597.CrossRefGoogle Scholar
  34. 34.
    P. Namanu, M. Jayalakshmi, and K. U. Bhat (2015). J. Mater. Sci. Mater. Electron.26, 8534.CrossRefGoogle Scholar
  35. 35.
    A. Layek, S. Middya, and P. P. Ray (2013). J. Mater. Sci. Mater. Electron.24, 3749.CrossRefGoogle Scholar
  36. 36.
    G. Kaur, B. Singh, P. Singh, K. Singh, A. Thakur, M. Kumar, R. Bala, and A. Kumar (2017). Chem. Sel.2, 2166.Google Scholar
  37. 37.
    A. Akhoondi, M. Aghaziarati, and N. Khandan (2013). Appl. Nanosci.3, 417.CrossRefGoogle Scholar
  38. 38.
    D. W. Wang, Q. H. Wang, and T. M. Wang (2010). CrystEngComm12, 755.CrossRefGoogle Scholar
  39. 39.
    P. Kush, S. Deka, and N. C. Mehra (2013). Sci. Adv. Mater. Sci. Adv. Mater.5, 788.CrossRefGoogle Scholar
  40. 40.
    X. Feng, X. He, W. Pu, C. Jiang, and C. Wan (2007). Ionics13, 375.CrossRefGoogle Scholar
  41. 41.
    J. Xia, J. Jiao, B. Dai, W. Qiu, S. He, W. Qiu, P. Shen, and L. Chen (2013). RSC Adv.3, 6132.CrossRefGoogle Scholar
  42. 42.
    S. Middya, A. Layek, A. Dey, and P. P. Ray (2014). J. Mater. Sci. Technol.30, 770.CrossRefGoogle Scholar
  43. 43.
    Z. T. Yang, X. J. Liu, J. S. Liu, and X. L. Feng Micro-nano technology. XIV (Trans Tech Publications, Zürich, 2013), pp. 136–140.Google Scholar
  44. 44.
    Z. Yang, X. Liu, X. Feng, Y. Cui, and X. Yang (2014). J. Appl. Electrochem.44, 1075.CrossRefGoogle Scholar
  45. 45.
    W. Liu, Y. Wang, Z. Ai, L. Zhang, and A. C. S. Appl (2015). Mater. Interfaces7, 28534.CrossRefGoogle Scholar
  46. 46.
    Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo, and S. Zheng (2016). CrystEngComm18, 6262.CrossRefGoogle Scholar
  47. 47.
    H. Duan, Y. F. Zheng, Y. Z. Dong, X. G. Zhang, and Y. F. Sun (2004). Mater. Res. Bull.39, 1861.CrossRefGoogle Scholar
  48. 48.
    D. Zhang, X. L. Wang, Y. J. Mai, X. H. Xia, C. D. Gu, and J. P. Tu (2012). J. Appl. Electrochem.42, 263.CrossRefGoogle Scholar
  49. 49.
    X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, and Y. Qian (2005). Inorg. Chem.44, 951.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Y. Hu, Z. Zheng, H. Jia, Y. Tang, and L. Zhang (2008). J. Phys. Chem. C112, 13037.CrossRefGoogle Scholar
  51. 51.
    C. Wadia, Y. Wu, S. Gul, S. K. Volkman, J. Guo, and A. P. Alivisatos (2009). Chem. Mater.21, 2568.CrossRefGoogle Scholar
  52. 52.
    S. Liu, J. Wu, P. Yu, Q. Ding, Z. Zhou, H. Li, C. Lai, Y.-L. Chueh, and Z. M. Wang (2014). Nanoscale Res. Lett.9, 549.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    B. Yuan, W. Luan, and S. Tu (2015). Mater. Lett.142, 160.CrossRefGoogle Scholar
  54. 54.
    B. Yuan, W. Luan, S. Tu, and J. Wu (2015). New J. Chem.39, 3571.CrossRefGoogle Scholar
  55. 55.
    G. Kaur, B. Singh, P. Singh, M. Kaur, K. K. Buttar, K. Singh, A. Thakur, R. Bala, M. Kumar, and A. Kumar (2016). RSC Adv.6, 99120.CrossRefGoogle Scholar
  56. 56.
    J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon (2007). Angew. Chemie Int. Ed.46, 4630.CrossRefGoogle Scholar
  57. 57.
    K. P. Bhandari, P. J. Roland, T. Kinner, Y. Cao, H. Choi, S. Jeong, and R. J. Ellingson (2015). J. Mater. Chem. A3, 6853.CrossRefGoogle Scholar
  58. 58.
    A. Dubey, S. Singh, B. Tulachan, M. Roy, G. Srivastava, D. Philip, S. Sarkar, and M. Das (2016). RSC Adv.6, 16859.CrossRefGoogle Scholar
  59. 59.
    M. Walter, T. Zund, and M. V. Kovalenko (2015). Nanoscale7, 9158.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    N. T. N. Truong, T. P. N. Nguyen, V. T. H. Pham, K. T. Trinh, S. Lee, and C. Park (2015). Jpn. J. Appl. Phys.54, 45001.CrossRefGoogle Scholar
  61. 61.
    L. Zhu, B. J. Richardson, and Q. Yu (2014). Nanoscale6, 1029.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    L. Zhu, B. J. Richardson, and Q. Yu (2015). Chem. Mater.27, 3516.CrossRefGoogle Scholar
  63. 63.
    M. Gong, A. Kirkeminde, and S. Ren (2013). Sci. Rep.3, 2092.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    H. Ge, L. Hai, R. R. Prabhakar, L. Y. Ming, and T. Sritharan (2014). RSC Adv.4, 16489.CrossRefGoogle Scholar
  65. 65.
    H. T. Kim, T. P. N. Nguyen, C. D. Kim, and C. Park (2014). Mater. Chem. Phys.2, 1095.CrossRefGoogle Scholar
  66. 66.
    A. Kirkeminde and S. Ren (2013). J. Mater. Chem. A1, 49.CrossRefGoogle Scholar
  67. 67.
    J. M. Lucas, C. C. Tuan, S. D. Lounis, D. K. Britt, R. Qiao, W. Yang, A. Lanzara, and A. P. Alivisatos (2013). Chem. Mater.25, 1615.CrossRefGoogle Scholar
  68. 68.
    M. Gong, A. Kirkeminde, N. Kumar, H. Zhao, and S. Ren (2013). Chem. Commun.49, 9260.CrossRefGoogle Scholar
  69. 69.
    Y. Bai, J. Yeom, M. Yang, S.-H. Cha, K. Sun, and N. A. Kotov (2013). J. Phys. Chem. C117, 2567.CrossRefGoogle Scholar
  70. 70.
    S. C. Hsiao, C. M. Hsu, S. Y. Chen, Y. H. Perng, Y. L. Chueh, L. J. Chen, and L. H. Chou (2012). Mater. Lett.75, 152.CrossRefGoogle Scholar
  71. 71.
    A. Kirkeminde, B. A. Ruzicka, R. Wang, S. Puna, H. Zhao, S. Ren, and A. C. S. Appl (2012). Mater. Interfaces4, 1174.CrossRefGoogle Scholar
  72. 72.
    A. Kirkeminde, R. Scott, and S. Ren (2012). Nanoscale4, 7649.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Y. Bi, Y. Yuan, C. L. Exstrom, S. A. Darveau, and J. Huang (2011). Nano Lett.11, 4953.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    B. Mao, Q. Dong, C. L. Exstrom, and J. Huang (2014). Thin Solid Films562, 361.CrossRefGoogle Scholar
  75. 75.
    W. Li, T. Dittrich, F. Jäckel, and J. Feldmann (2014). Small10, 1194.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    M. A. Khan, J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh (2014). Mater. Chem. Phys.148, 1022.CrossRefGoogle Scholar
  77. 77.
    M. A. Khan and Y. M. Kang (2014). Mater. Lett.132, 273.CrossRefGoogle Scholar
  78. 78.
    M. A. Khan, M. O. Manasreh, and Y.-M. Kang (2014). Mater. Lett.126, 181.CrossRefGoogle Scholar
  79. 79.
    S. C. Mangham, M. A. Khan, M. Benamara, and M. O. Manasreh (2013). Mater. Lett.97, 144.CrossRefGoogle Scholar
  80. 80.
    B. Killic, J. Roehling, and O. T. Özmen (2013). J. Nanoelectron. Optoelectron.8, 260.CrossRefGoogle Scholar
  81. 81.
    D. Y. Wang, Y. T. Jiang, C. C. Lin, S. S. Li, Y. T. Wang, C. C. Chen, and C. W. Chen (2012). Adv. Mater.24, 3415.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    L. K. Ganta, T. P. Dhakal, S. Rajendran, and C. R. Westgate (2012). MRS Proc.7, 1447.Google Scholar
  83. 83.
    C. W. Lin, D. Y. Wang, Y. T. Wang, C. C. Chen, Y. J. Yang, and Y. F. Chen (2011). Sol. Energy Mater. Sol. Cells95, 1107.CrossRefGoogle Scholar
  84. 84.
    W. Li, M. Doblinger, A. Vaneski, A. L. Rogach, F. Jackel, and J. Feldmann (2011). J. Mater. Chem.21, 17946.CrossRefGoogle Scholar
  85. 85.
    J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, and M. Law (2011). J. Am. Chem. Soc.133, 716.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    F. Jiang, L. T. Peckler, and A. J. Muscat (2015). Cryst. Growth Des.15, 3565.CrossRefGoogle Scholar
  87. 87.
    R. H. Sillitoe (2010). Econ. Geol.105, 3.CrossRefGoogle Scholar
  88. 88.
    X. Zhang, T. Scott, T. Socha, D. Nielsen, M. Manno, M. Johnson, Y. Yan, Y. Losovyj, P. Dowben, E. S. Aydil, C. Leighton, and A. C. S. Appl (2015). Mater. Interfaces7, 14130.CrossRefGoogle Scholar
  89. 89.
    L. Li, M. Caban-Acevedo, S. N. Girard, and S. Jin (2014). Nanoscale6, 2112.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Q. H. Huang, T. Ling, S. Z. Qiao, and X. W. Du (2013). J. Mater. Chem. A1, 11828.CrossRefGoogle Scholar
  91. 91.
    X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton (2013). ACS Nano7, 2781.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    M. Cabán-Acevedo, D. Liang, K. S. Chew, J. P. DeGrave, N. S. Kaiser, and S. Jin (2013). ACS Nano7, 1731.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    B. Chakraborty, B. Show, S. Jana, B. C. Mitra, S. K. Maji, B. Adhikary, N. Mukherjee, and A. Mondal (2013). Electrochim. Acta94, 7.CrossRefGoogle Scholar
  94. 94.
    R. Morrish, R. Silverstein, and C. A. Wolden (2012). J. Am. Chem. Soc.134, 17854.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    L. Y. Huang, L. Meng, and M. A. C. Mater (2010). Chem. Phys.124, 413.Google Scholar
  96. 96.
    B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessaïs, H. Ezzaouia, and J. C. Bernède (2005). Mater. Charact.54, 431.CrossRefGoogle Scholar
  97. 97.
    L. Meng, Y. H. Liu, and L. Tian (2003). J. Cryst. Growth J. Cryst. Growth253, 530.CrossRefGoogle Scholar
  98. 98.
    M. Wang, C. Xing, K. Cao, L. Zhang, J. Liu, and L. Meng (2014). J. Mater. Chem. A2, 9496.CrossRefGoogle Scholar
  99. 99.
    F. Wang, L. Huang, Z. Luan, J. Huang, L. Meng, and M. A. C. Mater (2012). Chem. Phys.132, 505.Google Scholar
  100. 100.
    Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, and J. Chen (2015). Energy Environ. Sci.8, 1309.CrossRefGoogle Scholar
  101. 101.
    D. Zhang, G. Wu, J. Xiang, J. Jin, Y. Cai, and G. Li (2013). Mater. Sci. Eng. B178, 483.CrossRefGoogle Scholar
  102. 102.
    H. T. Liao, Y. R. Wang, J. Wang, X. F. Qian, and S. Q. Cheng Advances Technology Manufature Engineering Materials (Trans Tech Publications, Zürich, 2013), pp. 677–681.Google Scholar
  103. 103.
    S. Kar and S. Chaudhuri (2005). Mater. Lett.59, 289.CrossRefGoogle Scholar
  104. 104.
    Y. Chen, Y. Zheng, X. Zhang, Y. Sun, and Y. Dong (2005). Sci. China Ser. G Phys. Mech. Astron.48, 188.CrossRefGoogle Scholar
  105. 105.
    S. Liu, M. Li, S. Li, H. Li, and L. Yan (2013). Appl. Surf. Sci.268, 213.CrossRefGoogle Scholar
  106. 106.
    N. E’jazi and M. Aghaziarati (2012). Adv. Powder Technol.23, 352.CrossRefGoogle Scholar
  107. 107.
    H. Ma, Z. G. Zou, Y. Wu, F. Long, H. J. Yu, and C. Y. Xie Applied engineering materials (Trans Tech Publications, Zürich, 2011), pp. 1327–1330.Google Scholar
  108. 108.
    S. Kar and S. Chaudhuri (2004). Chem. Phys. Lett.398, 22.CrossRefGoogle Scholar
  109. 109.
    Q. Yitai, Q. Xuefeng, and X. Yi (2001). Mater. Lett.48, 109.CrossRefGoogle Scholar
  110. 110.
    B.-B. Yu, X. Zhang, Y. Jiang, J. Liu, L. Gu, J.-S. Hu, and L.-J. Wan (2015). J. Am. Chem. Soc.137, 2211.CrossRefGoogle Scholar
  111. 111.
    D. Wang, Q. Wang, T. Wang, M. Wu, and J. Chen (2011). Ionics (Kiel).17, 163.CrossRefGoogle Scholar
  112. 112.
    T. S. Yoder, J. E. Cloud, G. J. Leong, D. F. Molk, M. Tussing, J. Miorelli, C. Ngo, S. Kodambaka, M. E. Eberhart, R. M. Richards, and Y. Yang (2014). Chem. Mater.26, 6743.CrossRefGoogle Scholar
  113. 113.
    W. L. Liu, X. H. Rui, H. T. Tan, C. Xu, Q. Y. Yan, and H. H. Hng (2014). RSC Adv.4, 48770.CrossRefGoogle Scholar
  114. 114.
    L. Samad, M. Cabán-Acevedo, M. J. Shearer, K. Park, R. J. Hamers, and S. Jin (2015). Chem. Mater.27, 3108.CrossRefGoogle Scholar
  115. 115.
    S. K. Bhar, S. Jana, A. Mondal, and N. Mukherjee (2013). J. Colloid Interface Sci.393, 286.CrossRefGoogle Scholar
  116. 116.
    G. Willeke, R. Dasbach, B. Sailer, and E. Bucher (1992). Thin Solid Films213, 271.CrossRefGoogle Scholar
  117. 117.
    M. Birkholz, D. Lichtenberger, C. Höpfner, and S. Fiechter (1992). Sol. Energy Mater. Sol. Cells27, 243.CrossRefGoogle Scholar
  118. 118.
    D. Lichtenberger, K. Ellmer, R. Schieck, and S. Fiechter (1993). Appl. Surf. Sci.70–71, 583.CrossRefGoogle Scholar
  119. 119.
    D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, and H. Tributsch (1994). Thin Solid Films246, 6.CrossRefGoogle Scholar
  120. 120.
    A. Baruth, M. Manno, D. Narasimhan, A. Shankar, X. Zhang, M. Johnson, E. S. Aydil, and C. Leighton (2012). J. Appl. Phys.112, 054328-13.CrossRefGoogle Scholar
  121. 121.
    A. Mars, H. Essaidi, and J. Ouerfelli (2016). JALCOM J. Alloy. Compd.688, 553.CrossRefGoogle Scholar
  122. 122.
    J. Wu, Y. Liang, P. Bai, S. Zheng, and L. Chen (2015). RSC Adv.5, 65575.CrossRefGoogle Scholar
  123. 123.
    D. Zhang, J. P. Tu, J. Y. Xiang, Q. Y. Qiao, H. X. Xia, X. L. Wang, and C. D. Gu (2011). EA Electrochim. Acta.56, 9980.CrossRefGoogle Scholar
  124. 124.
    P. P. Chin, J. Ding, J. B. Yi, and B. H. Liu (2005). J. Alloy. Compd.390, 255.CrossRefGoogle Scholar
  125. 125.
    M. L. Li, Q. Z. Yao, G. T. Zhou, X. F. Qu, C. F. Mu, and S. Q. Fu (2011). CrystEngComm13, 5936.CrossRefGoogle Scholar
  126. 126.
    E. J. Kim and B. Batchelor (2009). Mater. Res. Bull.44, 1553.CrossRefGoogle Scholar
  127. 127.
    L. R. Walker, G. K. Wertheim, and V. Jaccarino (1961). Phys. Rev. Lett.6, 98.CrossRefGoogle Scholar
  128. 128.
    S. Miyahara and T. Teranishi (1968). J. Appl. Phys.39, 896.CrossRefGoogle Scholar
  129. 129.
    F. Hulliger and E. Mooser (1965). Prog. Solid State Chem.2, 330.CrossRefGoogle Scholar
  130. 130.
    R. B. L. Neel (1953). Competus Rendus Chim.237, 444.Google Scholar
  131. 131.
    P. A. Montano and M. S. Seehra (1976). Solid State Commun.20, 897.CrossRefGoogle Scholar
  132. 132.
    W. Kerler, W. Neuwirth, E. Fluck, P. Kuhn, and B. Zimmermann (1963). Zeitschrift Für Phys.173, 321.CrossRefGoogle Scholar
  133. 133.
    A. A. Temperley and H. W. Lefevre (1966). J. Phys. Chem. Solids27, 85.CrossRefGoogle Scholar
  134. 134.
    Y. N. Li, S. Wang, T. Wang, R. Gao, C. Y. Geng, Y. W. Li, J. Wang, and H. Jiao (2013). ChemPhysChem14, 1182.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    X. Wu, X. Xie, and Y. Cao (2016). Trans. Nonferrous Met. Soc. China26, 3238.CrossRefGoogle Scholar
  136. 136.
    A. Schlegel and P. Wachter (1976). J. Phys. C Solid State Phys.9, 3363.CrossRefGoogle Scholar
  137. 137.
    T. A. Bither, R. J. Bouchard, W. H. Cloud, P. C. Donohue, and W. J. Siemons (1968). Inorg. Chem.7, 2208.CrossRefGoogle Scholar
  138. 138.
    H. S. Jarrett, W. H. Cloud, R. J. Bouchard, S. R. Butler, C. G. Frederick, and J. L. Gillson (1968). Phys. Rev. Lett.21, 617.CrossRefGoogle Scholar
  139. 139.
    M. Dekker and J. B. Goodenough (1976). Prog. Solid State Chem.10, 207.CrossRefGoogle Scholar
  140. 140.
    B. Kolb and A. M. Kolpak (2013). Phys. Rev. B88, 235208.CrossRefGoogle Scholar
  141. 141.
    P. Xiao, X.-L. Fan, L.-M. Liu, and W.-M. Lau (2014). Phys. Chem. Chem. Phys.16, 24466.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    D. W. Bullett (1982). J. Phys. C Solid State Phys.15, 6163.CrossRefGoogle Scholar
  143. 143.
    J. A. Tossell, D. J. Vaughan, and J. K. Burdett (1981). Phys. Chem. Miner.7, 177.CrossRefGoogle Scholar
  144. 144.
    M. S. Schmokel, L. Bjerg, S. Cenedese, M. R. V. Jorgensen, Y.-S. Chen, J. Overgaard, and B. B. Iversen (2014). Chem. Sci.5, 1408.CrossRefGoogle Scholar
  145. 145.
    D. A. Kitchaev and G. Ceder (2016). Nat. Commun.7, 13799.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    S. Ushioda (1972). Solid State Commun.10, 307.CrossRefGoogle Scholar
  147. 147.
    E. Bastola, K. P. Bhandari, and R. J. Ellingson (2017). J. Mater. Chem. C5, 4996.CrossRefGoogle Scholar
  148. 148.
    S. Shukla, G. Xing, H. Ge, R. R. Prabhakar, S. Mathew, Z. Su, V. Nalla, T. Venkatesan, N. Mathews, T. Sritharan, T. C. Sum, and Q. Xiong (2016). ACS Nano10, 4431.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    D. Liang, M. Cabán-Acevedo, N. S. Kaiser, and S. Jin (2014). Nano Lett.14, 6754.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    M. Limpinsel, N. Farhi, N. Berry, J. Lindemuth, C. L. Perkins, Q. Lin, and M. Law (2014). Energy Environ. Sci.7, 1974.CrossRefGoogle Scholar
  151. 151.
    F. W. Herbert (2013). Surf. Sci.618, 53.CrossRefGoogle Scholar
  152. 152.
    B. Mao, Q. Dong, Z. Xiao, C. L. Exstrom, S. A. Darveau, T. E. Webber, B. D. Lund, H. Huang, Z. Kang, and J. Huang (2013). J. Mater. Chem. A1, 12060.CrossRefGoogle Scholar
  153. 153.
    K. Büker, N. AlonsoVante, and H. Tributsch (1992). J. Appl. Phys.72, 5721.CrossRefGoogle Scholar
  154. 154.
    S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. DiTusa (2010). Phys. Rev. B81, 144424.CrossRefGoogle Scholar
  155. 155.
    J. Hu, Y. Zhang, M. Law, and R. Wu (2012). J. Am. Chem. Soc.134, 13216.CrossRefGoogle Scholar
  156. 156.
    W. Qiu, J. Xia, H. Zhong, S. He, S. Lai, and L. Chen (2014). EA Electrochim. Acta.137, 197.CrossRefGoogle Scholar
  157. 157.
    M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, and S. Jin (2014). J. Phys. Chem. C118, 21347.CrossRefGoogle Scholar
  158. 158.
    Y. Fan, D. Wang, D. Han, Y. Ma, S. Ni, Z. Sun, X. Dong, and L. Niu (2017). Nanoscale9, 5887.CrossRefGoogle Scholar
  159. 159.
    T. Kinner, K. P. Bhandari, E. Bastola, B. M. Monahan, N. O. Haugen, P. J. Roland, T. P. Bigioni, and R. J. Ellingson (2016). J. Phys. Chem. C120, 5706.CrossRefGoogle Scholar
  160. 160.
    D. Y. Wang, C. H. Li, S. S. Li, T. R. Kuo, C. M. Tsai, T. R. Chen, Y. C. Wang, C. W. Chen, and C. C. Chen (2016). Sci. Rep.6, 20397.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    M. Zhang, B. Chen, H. Tang, G. Tang, C. Li, L. Chen, H. Zhang, and Q. Zhang (2015). RSC Adv.5, 1417.CrossRefGoogle Scholar
  162. 162.
    H. Xue, Y. W. Denis, J. Qing, X. Yang, J. Xu, Z. Li, M. Sun, W. Kang, Y. Tang, and C. S. Lee (2015). J. Mater. Chem. A3, 7945.CrossRefGoogle Scholar
  163. 163.
    X. Wen, X. Wei, L. Yang, and P. K. Shen (2015). J. Mater. Chem. A3, 2090.CrossRefGoogle Scholar
  164. 164.
    Q. Wang, C. Guo, Y. Zhu, J. He, and H. Wang (2018). Nano-Micro Lett.10, 30.CrossRefGoogle Scholar
  165. 165.
    D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, and H. Dai (2015). J. Am. Chem. Soc.137, 1587.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    D. T. Tran, H. Dong, S. D. Walck, and S. S. Zhang (2015). RSC Adv.5, 87847.CrossRefGoogle Scholar
  167. 167.
    J. R. Tan, J. Yang, Y. Zhao, F. P. Hu, and K. Wang (2016). Chem. Commun.52, 986.CrossRefGoogle Scholar
  168. 168.
    S. Khalid, M. A. Malik, D. Lewis, P. Kevin, E. Ahmed, Y. Khan, and P. O’Brien (2015). J. Mater. Chem. C3, 12068.CrossRefGoogle Scholar
  169. 169.
    Z. H. Diao, X. R. Xu, D. Jiang, G. Li, J. J. Liu, L. J. Kong, and L. Z. Zuo (2017). J. Hazard. Mater.327, 108.CrossRefGoogle Scholar
  170. 170.
    C. H. Ho, C. E. Huang, and C. C. Wu (2004). J. Cryst. Growth270, 535.CrossRefGoogle Scholar
  171. 171.
    Z. Tan, L. Sharma, R. Kakkar, T. Meng, Y. Jiang, and M. Cao (2019). Inorg. Chem.. Scholar
  172. 172.
    Y. Liu, W. Wang, Q. Chen, C. Xu, D. Cai, and H. Zhan (2019). Inorg. Chem.58, 1330.CrossRefGoogle Scholar
  173. 173.
    R. Kumar, J. Rashid, and M. A. Barakat (2014). RSC Adv.4, 38334.CrossRefGoogle Scholar
  174. 174.
    A. M. Sajimol, P. B. Anand, K. M. Anilkumar, and S. Jayalekshmi (2013). Polym. Int.62, 670.CrossRefGoogle Scholar
  175. 175.
    H. T. B. Thomas, K. Ellmer, M. Mfiller, C. Hopfner, and S. Fiechter (1997). J. Cryst. Growth170, 808.CrossRefGoogle Scholar
  176. 176.
    G. Kaur, P. Devi, M. Kumar, A. Thakur, R. Bala, and A. Kumar (2017). Phys. Chem. Chem. Phys.19, 32412.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    A. Ennaoui, S. Fiechter, W. Jaegermann, and H. Tributsch (1986). J. Electrochem. Soc.133, 97.CrossRefGoogle Scholar
  178. 178.
    C. Wadia, A. P. Alivisatos, and D. M. Kammen (2009). Environ. Sci. Technol.43, 2072.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    D. J. Vaughan, Cambridge Earth Science Series, Cambridge 493, (1978).Google Scholar
  180. 180.
    E. Strauss, G. Ardel, V. Livshits, L. Burstein, D. Golodnitsky, and E. Peled (2000). J. Power Sources88, 206.CrossRefGoogle Scholar
  181. 181.
    P. Gao, Y. Xie, L. Ye, Y. Chen, and Q. Guo (2006). Cryst. Growth Des.6, 583.CrossRefGoogle Scholar
  182. 182.
    I.-S. Ahn, D. W. Kim, D. K. Kang, and D.-K. Park (2008). Met. Mater. Int.14, 65.CrossRefGoogle Scholar
  183. 183.
    K. B. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, C. Höpfner, H. Tributsch, and M. Bronold (1993). Sol. Energy Mater. Sol. Cells29, 289.CrossRefGoogle Scholar
  184. 184.
    P. K. Abraitis, R. A. D. Pattrick, and D. J. Vaughan (2005). Int. J. Miner. Process.74, 41.CrossRefGoogle Scholar
  185. 185.
    D. Ginley, M. A. Green, and R. Collins (2008). MRS Bull.33, 355.CrossRefGoogle Scholar
  186. 186.
    H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, A. M. Mahjoub, M. Koohiyan, and A. Ahmadi (2019). Medicina.55, 439.CrossRefGoogle Scholar
  187. 187.
    K. Mortezaee, M. Najafi, H. Samadian, H. Barabadi, A. Azarnezhad, and A. Ahmadi (2019). Chem. Biol. Interact.312, 108814.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    M. D. Archer and M. A. Green, Clean Electricity from Photovotaics (Imperial College Press, 2015).Google Scholar
  189. 189.
    I. J. Ferrer, J. R. Ares, and C. R. Sanchez (2003). Sol. Energy Mater. Sol. Cells76, 183.CrossRefGoogle Scholar
  190. 190.
    K. P. Bhandari, P. Koirala, N. R. Paudel, R. R. Khanal, A. B. Phillips, Y. Yan, R. W. Collins, M. J. Heben, and R. J. Ellingson (2015). Sol. Energy Mater. Sol. Cells140, 108.CrossRefGoogle Scholar
  191. 191.
    M. Wang, C. Chen, H. Qin, L. Zhang, Y. Fang, J. Liu, and L. Meng (2015). Adv. Mater. Interfaces2, 1500163.CrossRefGoogle Scholar
  192. 192.
    S. Shukla, N. H. Loc, P. P. Boix, T. M. Koh, R. R. Prabhakar, H. K. Mulmudi, J. Zhang, S. Chen, C. F. Ng, C. H. A. Huan, N. Mathews, T. Sritharan, and Q. Xiong (2014). ACS Nano8, 10597.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    C. Song, S. Wang, W. Dong, X. Fang, J. Shao, J. Zhu, and X. Pan (2016). Sol. Energy133, 429.CrossRefGoogle Scholar
  194. 194.
    J. Xu, H. Xue, X. Yang, H. Wei, W. Li, Z. Li, W. Zhang, and C.-S. Lee (2014). Small10, 4754.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    M. Zhou, J. He, L. Wang, S. Zhao, Q. Wang, S. Cui, X. Qin, and R. Wang (2018). Sol. Energy166, 71.CrossRefGoogle Scholar
  196. 196.
    B. Kilic, S. Turkdogan, A. Astam, O. C. Ozer, M. Asgin, H. Cebeci, D. Urk, and S. P. Mucur (2016). Sci. Rep.6, 27052.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    B. Kilic, S. Turkdogan, O. C. Ozer, M. Asgin, O. Bayrakli, G. Surucu, A. Astam, and D. Ekinci (2016). Mater. Lett.185, 584.CrossRefGoogle Scholar
  198. 198.
    F. Goubard and G. Wantz (2014). Polym. Int.63, 1362.CrossRefGoogle Scholar
  199. 199.
    Y. Y. Lin, D. Y. Wang, H. C. Yen, H. L. Chen, C. C. Chen, C. M. Chen, C. Y. Tang, and C. W. Chen (2009). Nanotechnology20, 405207.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    B. J. Richardson, L. Zhu, and Q. Yu (2013). Sol. Energy Mater. Sol. Cells116, 252.CrossRefGoogle Scholar
  201. 201.
    M. Nam, D. Choi, S. Kim, S. Lee, K. Lee, and S.-W. Kim (2014). J. Mater. Chem. A2, 9758.CrossRefGoogle Scholar
  202. 202.
    J. Xia, X. Lu, W. Gao, J. Jiao, H. Feng, and L. Chen (2011). Electrochim. Acta56, 6932.CrossRefGoogle Scholar
  203. 203.
    D. G. Moon, A. Cho, J. H. Park, S. Ahn, H. Kwon, Y. S. Cho, and S. Ahn (2014). J. Mater. Chem. A2, 17779.CrossRefGoogle Scholar
  204. 204.
    A. G. Ritchie, P. G. Bowles, and D. P. Scattergood (2004). P. J. Power Sources136, 276.CrossRefGoogle Scholar
  205. 205.
    H. J. Ahn, J. W. Choi, G. Cheruvally, J. H. Ahn, and K. W. Kim (2006). J. Power Sources163, 158.CrossRefGoogle Scholar
  206. 206.
    T. B. Kim, W. H. Jung, H. S. Ryu, K. W. Kim, J. H. Ahn, K. K. Cho, G. B. Cho, T. H. Nam, I. S. Ahn, and H. J. Ahn (2008). J. Alloys Compd.449, 304.CrossRefGoogle Scholar
  207. 207.
    D. Zhang, Y. J. Mai, J. Y. Xiang, X. H. Xia, Y. Q. Qiao, and J. P. Tu (2012). J. Power Sources217, 229.CrossRefGoogle Scholar
  208. 208.
    J. Liu, L. Liu, Z. Yuan, and C. Qiu (2013). Solid State Ionics241, 25.CrossRefGoogle Scholar
  209. 209.
    B. Dong, W. Ding, X. Wang, H. Peng, and Z. Peng (2013). Mater. Res. Bull.48, 4704.CrossRefGoogle Scholar
  210. 210.
    Y. Du, S. Wu, M. Huang, and X. Tian (2017). Chem. Eng. J.326, 257.CrossRefGoogle Scholar
  211. 211.
    Y. Shao-Horn, S. Osmialowski, and Q. C. Horn (2002). J. Electrochem. Soc.149, A1547.CrossRefGoogle Scholar
  212. 212.
    Y. J. Choi, J. H. Jeong, J. H. Ha, G. B. Cho, K. K. Cho, K. S. Ryu, and K. W. Kim (2010). Phys. Scr.2010, 14063.CrossRefGoogle Scholar
  213. 213.
    L. Montoro and J. M. Rosolen (2003). Solid State Ionics159, 233.CrossRefGoogle Scholar
  214. 214.
    A. Abdel-Wahab, D. S. Han, J. K. Song, and B. Batchelor (2013). J. Colloid Interface Sci.392, 311.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    M. V. Morales-Gallardo, A. M. Ayala, M. Pal, M. A. C. Jacome, J. A. T. Antonio, and N. R. Mathews (2016). Chem. Phys. Lett.660, 93.CrossRefGoogle Scholar
  216. 216.
    G. Lee and M. Kang (2013). Curr. Appl. Phys.13, 1482.CrossRefGoogle Scholar
  217. 217.
    D. Wang, Q. Wang, and T. Wang (2010). CrystEngComm12, 3797.CrossRefGoogle Scholar
  218. 218.
    H. T. Kim, T. P. N. Nguyen, C.-D. Kim, and C. Park (2014). Mater. Chem. Phys.148, 1095.CrossRefGoogle Scholar
  219. 219.
    X. Shi, A. Tian, X. Xue, H. Yang, and Q. Xu (2015). Mater. Lett.141, 104.CrossRefGoogle Scholar
  220. 220.
    Y. Li, Z. Han, L. Jiang, Z. Su, F. Liu, Y. Lai, and Y. Liu (2014). J. Solgel Sci. Technol.72, 100.CrossRefGoogle Scholar
  221. 221.
    M. Cabán-Acevedo, M. S. Faber, Y. Tan, R. J. Hamers, and S. Jin (2012). Nano Lett.12, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    B. V. da Amorim, F. J. Moura, E. A. Brocchi, M. J. Vieira, and M. T. Rupp (2012). Met. Mater. Trans B43, 781.CrossRefGoogle Scholar
  223. 223.
    D. Wan, Y. Wang, Z. Zhou, G. Yang, B. Wang, and L. Wei (2005). Mater. Sci. Eng. B122, 156.CrossRefGoogle Scholar
  224. 224.
    R. Wu, J. Jian, L. Tao, Y. Bian, J. Li, Y. Sun, J. Wang, and X. Y. Zeng (2010). Powder Diffr.25, 40–44.CrossRefGoogle Scholar
  225. 225.
    T. A. Yersak, H. A. Macpherson, S. C. Kim, V. D. Le, C. S. Kang, S. B. Son, Y. H. Kim, J. E. Trevey, K. H. Oh, C. Stoldt, and S. H. Lee (2013). Adv. Energy Mater.3, 120–127.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Functional Materials Laboratory, Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of Basic and Applied SciencesPunjabi UniversityPatialaIndia

Personalised recommendations