Advertisement

Dy(III) and Sm(III) Coordination Polymers Based on 2,4-Pyridinedicarboxylic Acid: Synthesis, Structures, Luminescence and Magnetism

  • Yanmei ChenEmail author
  • Liangchen Huang
  • Rui Gao
  • Yehui Chen
  • Zhuo Huang
  • Wanju ZhangEmail author
Original Paper
  • 15 Downloads

Abstract

Two new coordination polymers [Dy3(PDA)4(HO)(H2O)2]·6H2O (1) H2[(H3O)Sm3(PDA)6]·14H2O (2) (H2PDA = 2,4-pyridinedicarboxylic acid), have been hydrothermally synthesized and characterized by elemental analysis, IR, TG, XRD as well as single-crystal X-ray diffraction. They display different three-dimensional coordination frameworks, in which 2,4-PDA exhibits μ4-(κ5N,O2:O2′:O4:O4′), μ4-(κ5N,O2:O2,O2′:O4:O4′) and μ1-(κ5N,O2) coordination modes. Their topological structures have been analyzed. It is interesting that they have the same topological structure. The luminescence properties of 1 and 2 were determined with solid samples. They show the exclusive luminescence emission of Dy(III) or Sm(III) ions, respectively. The magnetic properties of 1 were also studied. It displays antiferromagnetic Dy(III)···Dy(III) interactions. CCDC 1945187 and 1945188 for complexes 1 and 2, respectively.

Keywords

Lanthanide coordination polymer Topological structure Luminescence Magnetic properties 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 21501061), the Natural Science Foundation of Hubei Province (No. 2016CFB147), the Foundation of Hubei Educational Committee (No. D20172904), Doctoral Fund Project of Huanggang Normal University (Grant No. 2015001803), Project of Chemical Experiment Teaching Demonstration Center of Huanggang Normal University (Nos. zj201723, zj201722, zx201724, zx2018004).

Supplementary material

10876_2019_1706_MOESM1_ESM.docx (2 mb)
Electronic supplementary material 1 (DOCX 1999 kb)
10876_2019_1706_MOESM2_ESM.cif (828 kb)
Electronic supplementary material 2 (CIF 828 kb)
10876_2019_1706_MOESM3_ESM.pdf (283 kb)
Electronic supplementary material 3 (PDF 283 kb)
10876_2019_1706_MOESM4_ESM.cif (2.8 mb)
Electronic supplementary material 4 (CIF 2856 kb)
10876_2019_1706_MOESM5_ESM.pdf (282 kb)
Electronic supplementary material 5 (PDF 282 kb)

References

  1. 1.
    J. R. Li, R. J. Kuppler, and H. C. Zhou (2009). Chem. Soc. Rev. 38, 1477–1504.CrossRefGoogle Scholar
  2. 2.
    W. J. Rieter, K. M. Pott, K. M. L. Taylor, and W. Lin (2008). J. Am. Chem. Soc. 130, 11584–11585.CrossRefGoogle Scholar
  3. 3.
    M. J. Wudkewych and R. L. LaDuca (2016). J. Mol. Struct. 1120, 156–162.CrossRefGoogle Scholar
  4. 4.
    Y. P. Wu, W. Zhou, J. Zhao, W. W. Dong, Y. Q. Lan, D. S. Li, C. H. Sun, and X. H. Bu (2017). Angew. Chem. Int. Ed. 56, 13001–13005.CrossRefGoogle Scholar
  5. 5.
    X. K. Yang, M. N. Chang, J. F. Hsing, M. L. Wu, C. T. Yang, C. H. Hsu, and J. D. Chen (2018). J. Mol. Struct. 1171, 340–348.CrossRefGoogle Scholar
  6. 6.
    X. K. Wang, J. Liu, L. Zhang, L. Z. Dong, S. L. Li, Y. H. Kan, D. S. Li, and Y. Q. Lan (2019). ACS Catal. 9, 1726–1732.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, N. Du, X. Zhang, Y. Wang, Y. H. Xing, F. Y. Bai, L. X. Sun, and Z. Shi (2018). Cryst. Growth Des. 18, 2259–2269.CrossRefGoogle Scholar
  8. 8.
    F. Le Natur, G. Calvez, C. Daiguebonne, O. Guillou, K. Bernot, J. Ledoux, L. Le Pollès, and C. Roiland (2013). Inorg. Chem. 52, 6720–6730.CrossRefGoogle Scholar
  9. 9.
    S. Freslon, Y. Luo, G. Calvez, C. Daiguebonne, O. Guillou, K. Bernot, V. Michel, and X. Fan (2014). Inorg. Chem. 53, 1217–1228.CrossRefGoogle Scholar
  10. 10.
    X. Fan, S. Freslon, C. Daiguebonne, L. Le Pollès, G. Calvez, K. Bernot, X. H. Yi, G. Huang, and O. Guillou (2015). Inorg. Chem. 54, (11), 5534–5546.CrossRefGoogle Scholar
  11. 11.
    A. M. Badiane, S. Freslon, C. Daiguebonne, Y. Suffren, K. Bernot, G. Calvez, K. Costuas, M. Camara, and O. Guillou (2018). Inorg. Chem. 57, 3399–3410.CrossRefGoogle Scholar
  12. 12.
    A. Abdallah, S. Freslon, X. Fan, A. Rojo, C. Daiguebonne, Y. Suffren, K. Bernot, G. Calvez, T. Roisnel, and O. Guillou (2019). Inorg. Chem. 58, 462–475.CrossRefGoogle Scholar
  13. 13.
    H. Y. Yao, G. Calvez, C. Daiguebonne, K. Bernot, Y. Suffren, M. Puget, C. Lescop, and O. Guillou (2017). Inorg. Chem. 56, 14632–14642.CrossRefGoogle Scholar
  14. 14.
    G. Huang, C. Daiguebonne, G. Calvez, Y. Suffren, O. Guillou, T. Guizouarn, B. Le Guennic, O. Cador, and K. Bernot (2018). Inorg. Chem. 57, 11044–11057.CrossRefGoogle Scholar
  15. 15.
    Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen (2012). J. Am. Chem. Soc. 134, 3979–3982.CrossRefGoogle Scholar
  16. 16.
    X. P. An, H. S. Wang, and G. C. Li (2014). J. Fluoresc. 24, 425–429.CrossRefGoogle Scholar
  17. 17.
    L. Guo, G. Wu, and H. H. Li (2012). J. Chem. Crystallogr. 42, 192–198.CrossRefGoogle Scholar
  18. 18.
    P. Wang, R. Q. Fan, X. R. Liu, Y. L. Yang, and G. P. Zhou (2012). J. Inorg. Organomet. Polym. 22, 744–755.CrossRefGoogle Scholar
  19. 19.
    Z. X. Wang, Q. F. Wu, H. J. Liu, M. Shao, H. P. Xiao, and M. X. Li (2010). Cryst. Eng. Commun. 12, 1139–1146.CrossRefGoogle Scholar
  20. 20.
    F. Costantino, A. Ienco, and S. Midollini (2010). Cryst. Growth Des. 10, 7–10.CrossRefGoogle Scholar
  21. 21.
    H. J. Zhang, R. Q. Fan, G. P. Zhou, P. Wang, and Y. L. Yang (2012). Inorg. Chem. Commun. 16, 100–103.CrossRefGoogle Scholar
  22. 22.
    Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126–1162.CrossRefGoogle Scholar
  23. 23.
    T. W. Tseng, T. T. Luo, C. C. Su, H. H. Hsu, C. I. Yang, and K. L. Lu (2014). Cryst. Eng. Commun. 16, 2626–2633.CrossRefGoogle Scholar
  24. 24.
    S. N. Bejagam, M. S. Fonari, B. B. Averkiev, V. N. Khrustalev, J. Lindline, and T. V. Timofeeva (2017). Cryst. Growth Des. 17, 4237–4245.CrossRefGoogle Scholar
  25. 25.
    F. L. Du, H. B. Zhang, C. B. Tian, and S. W. Du (2013). Cryst. Growth Des. 13, 1736–1742.CrossRefGoogle Scholar
  26. 26.
    X. M. Li, Q. W. Wang, and B. Liu (2012). Chin. J. Struct. Chem. 6, 889–893.CrossRefGoogle Scholar
  27. 27.
    G. M. Sheldrick SHELXS-2014, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 2014).Google Scholar
  28. 28.
    G. M. Sheldrick (2015). Acta Cryst. C 71, 3–8.CrossRefGoogle Scholar
  29. 29.
    A. L. Spek (2009). Acta Cryst. D 65, 148–155.CrossRefGoogle Scholar
  30. 30.
    S. Xu, Z. Wang, P. Li, T. Li, Q. Bai, J. Sun, and Z. Yang (2017). J. Am. Ceram. Soc. 100, 2069–2080.CrossRefGoogle Scholar
  31. 31.
    S. Wang, J. Xu, J. Wang, K.-Y. Wang, S. Dang, S. Song, D. Liu, and C. Wang (2017). J. Mater. Chem. C 5, 6620–6628.CrossRefGoogle Scholar
  32. 32.
    F. Ravotti, D. Benoit, P. Lefebvre, P. Valvin, J. R. Vaille, L. Dusseau, J. Fesquet, and J. Gasiot (2007). J. Appl. Phys. 102, 123102–123105.CrossRefGoogle Scholar
  33. 33.
    J. Pantoflicek and L. Parma (1968). Czech. J. Phys. 18, 1610–1621.CrossRefGoogle Scholar
  34. 34.
    A. Sarkar, C. J. Gomez-Garcia, S. Benmansour, and H. P. Nayek (2019). ChemPlusChem 84, 974–980.CrossRefGoogle Scholar
  35. 35.
    N. F. Ghazali, W. Phonsri, K. S. Murray, P. C. Junk, G. B. Deacon, and D. R. Turner (2019). Eur. J. Inorg. Chem. 2019, 2549–2557.CrossRefGoogle Scholar
  36. 36.
    X. Feng, Y. Shang, H. Zhang, R. Li, W. Wang, D. Zhang, L. Wang, and Z. Li (2019). RSC Adv. 9, 16328–16338.CrossRefGoogle Scholar
  37. 37.
    T. Bereta, A. Mondal, K. Slepokura, Y. Peng, A. K. Powell, and J. Lisowski (2019). Inorg. Chem. 58, 4201–4213.CrossRefGoogle Scholar
  38. 38.
    G. Lu, Y.-C. Chen, S.-G. Wu, G.-Z. Huang, J.-L. Liu, Z.-P. Ni and M.-L. Tong (2018). arXiv.org, e-Print Arch., Condens. Matter 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical EngineeringHuanggang Normal UniversityHuanggangChina

Personalised recommendations