Synthesis of Selenium Nanoparticles Using Probiotic Bacteria Lactobacillus acidophilus and Their Enhanced Antimicrobial Activity Against Resistant Bacteria

  • Hammad Alam
  • Nafeesa Khatoon
  • Mohammad Aasif Khan
  • Syed Akhtar Husain
  • Muthupandian Saravanan
  • Meryam SardarEmail author
Original Paper


In the present study, nontoxic selenium nanoparticles were synthesized extracellularly using probiotic bacteria Lactobacillus acidophilus. The synthesized Lactobacillus acidophilus mediated selenium nanoparticles (LA-SeNPs) show the surface plasmon resonance (SPR) at 385 nm. The hydrodynamic radius of LA-SeNPs was found to be 34.13 nm along with polydispersity index (0.28) and zeta potential (+ 37.86 mV). TEM shows that the average diameter of LA-SeNPs is 2–15 nm. FTIR suggest that extracellular proteins present in bacterial culture were responsible for reduction and stabilization of Se ions to LA-SeNPs. The antibacterial activity of synthesized nanoparticles was studied against five different sensitive and resistant bacterial strains. The MIC90 for bacterial strains were in the range ± 1 to ± 10 µg/ml. The inhibition and degradation of bacterial biofilm were studied against all the tested strains. The synthesized nanoparticles were cyto-compatible against human HEK-293 normal cell lines shown by MTT assay.


Lactobacillus acidophilus Selenium nanoparticles Biocompatible Biofilm Antioxidant 



We acknowledge to Indian Council of Medical Research [Grant Number 35/8/2012-BMS], Govt. of India for providing financial support.


  1. 1.
    L. Wang, C. Hu, and L. Shao (2017). Int. J. Nanomed. 12, 1227.CrossRefGoogle Scholar
  2. 2.
    M. N. Alekshunand and S. B. Levy (2007). Cell 128, 1037.CrossRefGoogle Scholar
  3. 3.
    Y. N. Slavin, J. Asnis, U. O. Hafeli, and H. Bach (2017). J. Nanobiotechnol. 15, 1.CrossRefGoogle Scholar
  4. 4.
    M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog. 117, 68.PubMedCrossRefGoogle Scholar
  5. 5.
    M. Saravanan, S. K. Barik, D. A. Mubarak, P. Prakash, and A. Pugazhendhi (2018). Microb. Pathog. 116, 221.PubMedCrossRefGoogle Scholar
  6. 6.
    B. Hosnedlova, M. Kepinska, S. Skalickova, C. Fernandez, B. Ruttkay-Nedecky, Q. Peng, and G. Bjorklund (2018). Int. J. Nanomed. 13, 2107.CrossRefGoogle Scholar
  7. 7.
    D. Medina Cruz, G. Mi, and T. J. Webster (2018). J. Biomed. Mater. Res. A 106, 1400.PubMedCrossRefGoogle Scholar
  8. 8.
    A. Husen and K. S. Siddiqi (2014). J. Nanobiotechnol. 12, 1.CrossRefGoogle Scholar
  9. 9.
    P. Bao, K. Q. Xiao, H. J. Wang, H. Xu, P. P. Xu, Y. Jia, and Y. G. Zhu (2016). Sci. Rep. 6, 1.CrossRefGoogle Scholar
  10. 10.
    Y. Tan, Y. Wang, Y. Wang, D. Xu, Y. Huang, D. Wang, C. Rensing, and S. Zheng (2018). J. Hazard. Mater. 359, 129.PubMedCrossRefGoogle Scholar
  11. 11.
    D. Xu, L. Yang, Y. Wang, G. Wang, C. Rensing, and S. Zheng (2018). Sci. Rep. 8, 1.CrossRefGoogle Scholar
  12. 12.
    H. Fernández-Llamosas, L. Castro, M. L. Blázquez, E. Díaz, and M. Carmona (2017). Sci. Rep. 7, 1.CrossRefGoogle Scholar
  13. 13.
    C. Xu, Y. Guo, L. Qiao, L. Ma, Y. Cheng, and A. Roman (2018). Front. Microbiol. 9, 1129.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    R. Avendaño, N. Chaves, P. Fuentes, E. Sanchez, J. I. Jiménez, and M. Chavarría (2016). Sci. Rep. 6, 1.CrossRefGoogle Scholar
  15. 15.
    G. M. Khiralla and B. A. El-Deeb (2015). LWT Food Sci. Technol. 63, 1001.CrossRefGoogle Scholar
  16. 16.
    S. Shoeibi and M. Mashreghi (2017). J. Trace Elem. Med. Biol. 39, 135.PubMedCrossRefGoogle Scholar
  17. 17.
    A. Presentato, E. Piacenza, M. Anikovskiy, M. Cappelletti, D. Zannoni, and R. J. Turner (2018). N. Biotechnol. 41, 1.PubMedCrossRefGoogle Scholar
  18. 18.
    T. Wang, L. Yang, B. Zhang, and J. Liu (2010). Colloids Surf. B Biointerfaces 80, 94.PubMedCrossRefGoogle Scholar
  19. 19.
    A. J. Kora (2018). Bioresour. Bioprocess. 5, 1.CrossRefGoogle Scholar
  20. 20.
    W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao, and D. Li (2011). Colloids Surf. B Biointerfaces 88, 196.PubMedCrossRefGoogle Scholar
  21. 21.
    S. K. Torres, V. L. Campos, C. G. León, S. M. Rodríguez-Llamazares, S. M. Rojas, M. Gonzalez, and M. A. Mondaca (2012). J. Nanoparticle Res. 14, 1236.CrossRefGoogle Scholar
  22. 22.
    Z. B. Kazempour, M. H. Yazdi, F. Rafiiand, and A. R. Shahverdi (2013). Iran. J. Microb. 5, 81.Google Scholar
  23. 23.
    P. S. Kale (2014). Eur. J. Exp. Biol. 4, 95.Google Scholar
  24. 24.
    H. J. (1993). Approved standard. National Committee for Clinical Laboratory Standards Antimicrobial Susceptibility Testing NCCLS-M7.Google Scholar
  25. 25.
    S. Goel and P. Mishra (2018). Appl. Microbiol. Biotechnol. 102, 1955.PubMedCrossRefGoogle Scholar
  26. 26.
    N. C. Cady, K. A. McKean, J. Behnke, R. Kubec, A. P. Mosier, S. H. Kasper, D. S. Burz, and R. A. Musah (2012). PLoS ONE 7, e38492.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    H. Kuthan, H. J. Haussmann, and J. Werringloer (1986). Biochem. J. 237, 175.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    J. E. Visick and S. Clarke (1997). J. Bacteriol. 179, 4158.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    M. Mallick, M. Singh, R. Parveen, W. Khan, S. Ahmad, M. Zeeshan Najm, and S. A. Husain (2015). Biomed. Res. Int. 2015, 1.CrossRefGoogle Scholar
  30. 30.
    M. Sardar and H. Alam Green and sustainable selenium nanoparticles and their biotechnological applications. Green and Sustainable Advanced Materials: Processing and Characterization (Wiley, Hoboken, 2018), p. 333.CrossRefGoogle Scholar
  31. 31.
    C. Xu, L. Qiao, Y. Guo, L. Ma, and Y. Cheng (2018). Carbohydr. Polym. 195, 576.PubMedCrossRefGoogle Scholar
  32. 32.
    C. Xu, L. Qiao, L. Ma, S. Yan, Y. Guo, X. Dou, Z. Baohua, and A. Roman (2019). Front. Microbiol. 10, 1632.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    M. Kechagia, D. Basoulis, S. Konstantopoulou, D. Dimitriadi, K. Gyftopoulou, N. Skarmoutsou, and E. M. Fakiri (2013). ISRN Nutr. 2013, 1.CrossRefGoogle Scholar
  34. 34.
    K. R. Pandey, S. R. Naik, and B. V. Vakil (2015). J. Food Sci. Technol. 52, 7577.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    H. Alam, N. Khatoon, M. Raza, P. C. Ghosh, and M. Sardar (2019). Bionanoscience 9, 96.CrossRefGoogle Scholar
  36. 36.
    M. Saravanan, A. K. Vemu, and S. K. Barik (2011). Colloids Surf. B Biointerfaces 88, 325.PubMedCrossRefGoogle Scholar
  37. 37.
    E. Cremonini, E. Zonaro, M. Donini, S. Lampis, M. Boaretti, S. Dusi, P. Melotti, M. M. Lleo, and G. Vallini (2016). Microb. Biotechnol. 9, 758.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    X. Huang, X. Chen, Q. Chen, Q. Yu, D. Sunand, and J. Liu (2016). Acta Biomater. 30, 397.PubMedCrossRefGoogle Scholar
  39. 39.
    Y. G. Yuan, Q. L. Peng, and S. Gurunathan (2017). Int. J. Mol. Sci. 18, 1.Google Scholar
  40. 40.
    N. Jain, A. Bhargava, M. Rathi, R. V. Dilip, and J. Panwar (2015). PloS ONE 10, e0134337.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Enzyme Technology, Lab Department of BiosciencesJamia Millia IslamiaNew DelhiIndia
  2. 2.Human Genetics Laboratory, Department of BiosciencesJamia Millia IslamiaNew DelhiIndia
  3. 3.Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations