Advertisement

Clinically Pertinent Manganese Oxide/Polyoxytyramine/Reduced Graphene Oxide Nanocomposite for Voltammetric Detection of Salivary and Urinary Arsenic

  • Sathish Kumar Ponnaiah
  • Prakash PeriakaruppanEmail author
  • Mohannivas Selvam
  • Saravanan Muthupandian
  • B. Jeyaprabha
  • Rayappan Selvanathan
Original Paper
  • 7 Downloads

Abstract

Arsenic (AsIII), a notorious environmental hazard poses threat to the lives of several hundred million people. Notwithstanding radical developments of AsIII detection in water, a fast, simple and sensitive electrochemical process with lower detection limit for the quantification of AsIII in saliva and urine samples has scarcely ever been tried. Here, we have detected the poisoning due to AsIII in the saliva and urine samples of tobacco-chewers/smokers using a novel one-pot synthesized MnO2/polyoxytyramine/rGO nanocomposite. The composite was characterized by various analytical techniques such as UV–Vis. and FT-IR spectroscopic analyses, XRD, SEM, TEM, EDAX and elemental mapping analyses. The proposed AsIII quantification system has a wide linearity range (0.01–0.900 ppb) and the lowest detection limit (42 parts per trillion).

Keywords

Nanocomposite MnO2/polyoxytyramine/rGO Voltammetry Arsenic quantification Saliva and urine samples 

Notes

Acknowledgements

The “Catalyzed and Financial support” by Tamilnadu State Council for Science and Technology, Department of Higher Education, Government of Tamilnadu, India for the award of research funding for research scholars (RFRS) scheme (TNSCST/RFRS/VR/07/2018-19) is very much acknowledged.

Supplementary material

10876_2019_1696_MOESM1_ESM.docx (923 kb)
Supplementary material 1 (DOCX 922 kb)

References

  1. 1.
    J. Barton, M. B. G. Garcia, D. H. Santos, P. Fanjul-Bolado, A. Ribotti, M. Mccaul, D. Diamond, and P. Magni (2016). Microchim. Acta 183, (2), 503–517.CrossRefGoogle Scholar
  2. 2.
    B. Vellaichamy, P. Periakaruppan, and B. Nagulan (2017). ACS Sustain. Chem. Eng. 5, 9313–9324.CrossRefGoogle Scholar
  3. 3.
    A. Karthika, S. Selvarajan, P. Karuppasamy, A. Suganthi, and M. Rajarajan (2019). J. Phys. Chem. Solids 127, 11–18.CrossRefGoogle Scholar
  4. 4.
    S.-H. Wen, R.-P. Liang, H.-H. Zeng, L. Zhang, and J.-D. Qiu (2019). Microchim. Acta 186, 45–55.CrossRefGoogle Scholar
  5. 5.
    G. Bombach, W. Klemm, and A. Greif (2019). Microchim. Acta 151, 203–208.CrossRefGoogle Scholar
  6. 6.
    X. Ge, Y. Ma, X. Song, G. Wang, H. Zhang, Y. Zhang, and H. Zhao (2017). ACS Appl. Mater. Interfaces 9, (15), 13480–13490.CrossRefGoogle Scholar
  7. 7.
    J. Wang, S. Zhou, J. Huang, G. Zhaoa, and Y. Liu (2018). RSC Adv. 8, 12222–12231.CrossRefGoogle Scholar
  8. 8.
    Z. L. Gong, X. Lu, M. S. Ma, C. Watt, and X. C. Le (2002). Talanta 58, 77–96.CrossRefGoogle Scholar
  9. 9.
    N. Zhang, N. Fu, Z. Fang, Y. Feng, and L. Ke (2011). Food Chem. 124, 1185–1188.CrossRefGoogle Scholar
  10. 10.
    M. Welna, A. Szymczycha-Madeja, and P. Pohl (2013). Food Anal. Method 7, 1016–1023.CrossRefGoogle Scholar
  11. 11.
    F. J. Pereira, M. D. Vazquez, L. Deban, and A. J. Aller (2015). Anal. Method 7, 598–606.CrossRefGoogle Scholar
  12. 12.
    E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao (2007). Sensor Sens. Actuators B 123, 82–88.CrossRefGoogle Scholar
  13. 13.
    R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt (2015). Anal. Chem. 87, 3535–3542.CrossRefGoogle Scholar
  14. 14.
    International Agency for Research on Cancer (2012). IARC monographs on the evaluation of carcinogenic risks to humans lyon, France 100 C, 36–93.Google Scholar
  15. 15.
    H. Kaur, R. Kumar, J. N. Babu, and S. Mittal (2015). Biosens. Bioelectron. 63, 533–545.CrossRefGoogle Scholar
  16. 16.
    G. R. C. Almeida, C. U. Freitas, J. F. Barbosa, J. E. Tanus-Santos, and R. F. Gerlach (2009). Sci. Total Environ. 407, 1547–1550.CrossRefGoogle Scholar
  17. 17.
    C. Yuan, X. Lu, N. Oro, Z. Wang, Y. Xia, T. J. Wade, J. Mumford, and X. C. Le (2008). Clin. Chem. 54, (1), 163–171.CrossRefGoogle Scholar
  18. 18.
    K. Lew, J. P. Acker, S. Gabos, and X. C. Le (2010). Environ. Sci. Technol. 44, (10), 3986–3991.CrossRefGoogle Scholar
  19. 19.
    D. Wang, Y. Shimoda, S. Wang, Z. Wang, J. Liu, X. Liu, H. Jin, F. Gao, J. Tong, K. Yamanaka, J. Zhang, and Y. An (2017). Environ. Health Prev. Med. 22, 45–54.CrossRefGoogle Scholar
  20. 20.
    S. K. Ponnaiah, P. Periakaruppan, and B. Vellaichamy (2018). Ultrason. Sonochem. 44, 196–203.CrossRefGoogle Scholar
  21. 21.
    S. K. Ponnaiah, P. Periakaruppan, B. Vellaichamy, T. Paulmony, and R. Selvanathan (2018). Electrochim. Acta 283, 914–921.CrossRefGoogle Scholar
  22. 22.
    T. Kajisa, W. Li, T. Michinobu, and T. Sakata (2018). Biosens. Bioelectron. 117, 810–817.CrossRefGoogle Scholar
  23. 23.
    S. Palanisamy, B. Thirumalraj, S.-M. Chen, Y.-T. Wang, V. Velusamy, and S. K. Ramaraj (2016). Sci. Rep. 6, 33599–33608.CrossRefGoogle Scholar
  24. 24.
    J. M. George, A. Antony, and B. Mathew (2018). Microchim. Acta 185, 358.CrossRefGoogle Scholar
  25. 25.
    M. Khan, M. N. Tahir, S. F. Adil, H. U. Khan, M. R. H. Siddiqui, A. A. Al-warthan, and W. Tremel (2015). J. Mater. Chem. A 3, 18753–18808.CrossRefGoogle Scholar
  26. 26.
    L. Zhang, Q. Chen, X. Han, and Q. Zhang (2018). J. Cluster Sci. 29, (6), 1089–1098.CrossRefGoogle Scholar
  27. 27.
    A. Puangjan, S. Chaiyasith, S. Wichitpanya, S. Daengduang, and S. Puttota (2016). J. Electroanal. Chem. 782, 192–201.CrossRefGoogle Scholar
  28. 28.
    X. Cui, X. Fang, H. Zhao, Z. Li, and H. Ren (2017). Anal. Methods 9, 5322–5332.CrossRefGoogle Scholar
  29. 29.
    R. Zheng, S. Wang, Y. Tian, X. Jiang, D. Fu, S. Shen, and W. Yang (2015). ACS Appl. Mater. Interfaces 7, (29), 15876–15884.CrossRefGoogle Scholar
  30. 30.
    C. Wang, J. Bai, Y. Liu, X. Jia, and X. Jiang (2016). ACS Biomater. Sci. Eng. 2, (11), 2011–2017.CrossRefGoogle Scholar
  31. 31.
    S. K. Ponnaiah, P. Periakaruppan, and S. Muthupandian (2019). Ultrason. Sonochem. 58, 104629–104639.CrossRefGoogle Scholar
  32. 32.
    S. K. Ponnaiah and P. Periakaruppan (2018). Microchim. Acta 185, 524–531.CrossRefGoogle Scholar
  33. 33.
    P. Devi, C. Sharm, P. Kumar, M. Kumar, B. K. S. Bansod, M. K. Nayak, and M. L. Singla (2017). J. Hazard Mater. 322, 85–94.CrossRefGoogle Scholar
  34. 34.
    S. Sampath, M. O. Thotiyl, H. Basit, J. A. Sanchez, C. Goyer, L. Coche-Guerente, P. Dumy, P. Labbe, and J. C. Moutet (2012). J. Colloid Interface Sci. 383, 130–139.CrossRefGoogle Scholar
  35. 35.
    S. Kumar, G. Bhanjana, N. Dilbaghi, R. Kumar, and A. Umar (2016). Sens. Actuators B Chem. 227, 29–34.CrossRefGoogle Scholar
  36. 36.
    K. B. Male, S. Hrapovic, J. M. Santini, and J. H. Luong (2007). Anal. Chem. 79, 7831–7837.CrossRefGoogle Scholar
  37. 37.
    M. Kremplova, L. Richtera, P. Kopel, R. Kensova, I. Blazkova, V. Milosavljevic, D. Hynek, V. Adam, and R. Kizek (2016). Int. J. Electrochem. Sci. 11, 1213–1227.Google Scholar
  38. 38.
    M. R. Rahman, T. Okajima, and T. Ohsaka (2010). Anal. Chem. 82, 9169–9176.CrossRefGoogle Scholar
  39. 39.
    R. Gupta, J. S. Gamare, A. K. Pandey, D. Tyagi, and J. V. Kamat (2016). Anal. Chem. 88, 2459–2465.CrossRefGoogle Scholar
  40. 40.
    S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi (2012). Electrochim. Acta 72, 157–164.CrossRefGoogle Scholar
  41. 41.
    N. Moghimi, M. Mohapatra, and K. T. Leung (2015). Anal. Chem. 87, (11), 5546–5552.CrossRefGoogle Scholar
  42. 42.
    A. Salimi, H. Mamkhezri, R. Hallaj, and S. Soltanian (2008). Sens. Actuators B Chem. 129, 246–254.CrossRefGoogle Scholar
  43. 43.
    S. Wu, Q. Zhao, L. Zhou, and Z. Zhang (2014). Electroanalysis 26, 1840–1849.CrossRefGoogle Scholar
  44. 44.
    S. K. Ponnaiah, P. Periakaruppan, and B. Vellaichamy (2018). J. Phys. Chem. B 122, 3037–3046.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryThiagarajar CollegeMaduraiIndia
  2. 2.Department of Microbiology and Immunology, Institute of Biomedical Sciences, College of Health ScienceMekelle UniversityMekelleEthiopia
  3. 3.Department of Civil EngineeringSethu Institute of TechnologyVirudhunagarIndia
  4. 4.Department of ChemistryArul Anandar CollegeKarumathurIndia

Personalised recommendations