Statistical Optimization to Augment the Photocatalytic Reduction of Brilliant Blue G-250 Using the Biogenic Semiconductor Nanorods: An Ecosafety Approach

  • Kandasamy Saravanakumar
  • Xiaowen Hu
  • Sekar Vijayakumar
  • Myeong-Hyeon WangEmail author
Original Paper


The present work reported the synthesis and characterization of cadmium sulphide nanorods (Th-CdSNRs) from Trichoderma harzianum for enhanced photocatalytic degradation of coomassie Brilliant Blue-G250 (BBG-250). The degradation of BBG-250 was improved by statistical optimization using response surface methodology (RSM). In addition, the toxicity of the degraded dye (BBG-250) was tested in in vivo Artemia salina model. The formation of Th-CdSNRs by Trichoderma molecules was confirmed by FTIR spectrum, Energy dispersive X-ray spectroscopy (EDS) and powder X-ray diffraction (XRD) analyses. Th-CdSNRs were rod-shaped with width size ranged from 0.184 to 0.42 µm and length varied between 1.07 and 1.63 µm, as revealed by the scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results. RSM results indicated that about 92% of BBG-250 was degraded under optimized condition of Th-CdSNRs (0.69 g L−1), pH (4.55), initial dye concentration (57.09 mg L−1) and UV light irradiation time (59 min). Further, the toxicity study revealed the less toxicity of degraded BBG-250 as compared to undegraded dye. In conclusion, this work produced the photocatalysts (Th-CdSNRs) from cell free mycelial extract (CFME) for enhanced removal of toxic organic pollutants in industrial wastewater effluents (IWWE) through photocatalytic reduction.


Trichoderma Biosynthesis Cadmium sulphide nanorods Bioremediation 



This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017H1D3A1A01052610) and Ministry of Agriculture Food and rural Affairs (318077-2).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    L. Travieso, A. Pellón, F.Benítez, E. Sánchez, R. Borja, N. O’Farrill, and P. Weiland (2002). Biochem. Eng. J. 12, 87–91.CrossRefGoogle Scholar
  2. 2.
    K. Saravanakumar and K. Kathiresan (2015). Int. J. Environ. Sci. Technol. 12, 3341–3350.CrossRefGoogle Scholar
  3. 3.
    F. Hu, C. Fang, Z. Wang, C. Liu, B. Zhu, and L. Zhu (2017). Sep. Purif. Technol. 188, 1–10.CrossRefGoogle Scholar
  4. 4.
    A. H. Qusti, A. Y. S. Malkhasian, and M. A. Salam (2018). J. Mol. Liq. 255, 364–369.CrossRefGoogle Scholar
  5. 5.
    T. Akar, E. Ozkara, S. Celik, S. Turkyilmaz, and S. T. Akar (2013). Colloids Surf. B 101, 307–314.CrossRefGoogle Scholar
  6. 6.
    Y. Anjaneyulu, N. Sreedhara Chary, and D. Samuel Suman Raj (2005). Rev. Environ. Sci. Biotechnol. 4, 245–273.CrossRefGoogle Scholar
  7. 7.
    K. H. Thebo, X. Qian, Q. Zhang, L. Chen, H.-M. Cheng, and W. Ren (2018). Nat. Commun. 9, 1486.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    K.-W. Jung, B. H. Choi, C. M. Dao, Y. J. Lee, J.-W. Choi, K.-H. Ahn, and S.-H. Lee (2018). J. Ind. Eng. Chem. 59, 149–159.CrossRefGoogle Scholar
  9. 9.
    A. Alipour and M. Mansour Lakouarj (2019). J. Environ. Chem. Eng. 7, 102837.CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, H. Ou, H. Liu, Y. Ke, W. Zhang, G. Liao, and D. Wang (2018). Colloids Surf. A. 537, 92–101.CrossRefGoogle Scholar
  11. 11.
    M. Safdar, Y. Junejo, and A. Balouch (2015). J. Ind. Eng. Chem. 31, 216–222.CrossRefGoogle Scholar
  12. 12.
    A. Kalaiselvi, S. M. Roopan, G. Madhumitha, C. Ramalingam, and G. Elango (2015). Spectrochim. Acta A. 135, 116–119.CrossRefGoogle Scholar
  13. 13.
    N. Karthikeyan, T. Sivaranjani, S. Dhanavel, V. K. Gupta, V. Narayanan, and A. Stephen (2017). J. Mol. Liq. 227, 194–201.CrossRefGoogle Scholar
  14. 14.
    A. Verma, N. T. Prakash, and A. P. Toor (2014). Chemosphere. 109, 7–13.CrossRefPubMedGoogle Scholar
  15. 15.
    M. D. Rao and G. Pennathur (2017). Mater. Res. Bull. 85, 64–73.CrossRefGoogle Scholar
  16. 16.
    L. R. Reyes, I. Gómez, and M. T. Garza (2009). Int. J. Green Nanotechnol. Biomed. 1, B90–B95.CrossRefGoogle Scholar
  17. 17.
    H. Yang, C. Huang, X. Li, R. Shi, and K. Zhang (2005). Mater. Chem. Phys. 90, 155–158.CrossRefGoogle Scholar
  18. 18.
    Y.-J. Yuan, D. Chen, Z.-T. Yu, and Z.-G. Zou (2018). J. Mater. Chem. A 6, 11606–11630.CrossRefGoogle Scholar
  19. 19.
    M. Mahanthappa, N. Kottam, and S. Yellappa (2019). Appl. Surf. Sci. 475, 828–838.CrossRefGoogle Scholar
  20. 20.
    X.-N. Wei, C.-L. Ou, S.-S. Fang, X.-C. Zheng, G.-P. Zheng, and X.-X. Guan (2019). Powder Technol. 345, 213–222.CrossRefGoogle Scholar
  21. 21.
    N. A. Shad, M. Zahoor, K. Bano, S. Z. Bajwa, N. Amin, A. Ihsan, R. A. Soomro, A. Ali, M. Imran Arshad, A. Wu, M. Z. Iqbal, and W. S. Khan (2017). Inorg. Chem. Commun. 86, 213–217.CrossRefGoogle Scholar
  22. 22.
    K. Saravanakumar and M.-H. Wang (2019). Adv Powder Technol 30, 786–794.CrossRefGoogle Scholar
  23. 23.
    K. Saravanakumar and M.-H. Wang (2018). Microb. Pathog. 114, 269–273.CrossRefPubMedGoogle Scholar
  24. 24.
    K. Saravanakumar, S. Shanmugam, N. B. Varukattu, D. MubarakAli, K. Kathiresan, and M.-H. Wang (2019). J. Photochem. Photobiol. B: Biol. 190, 103–109.CrossRefGoogle Scholar
  25. 25.
    K. Saravanakumar, R. Chelliah, D. MubarakAli, E. Jeevithan, D.-H. Oh, K. Kathiresan, and M.-H. Wang (2018). Int. J. Biol. Macromol. 118, 1542–1549.CrossRefPubMedGoogle Scholar
  26. 26.
    K. Saravanakumar, R. Chelliah, S. Shanmugam, N.B. Varukattu, D.-H. Oh, K. Kathiresan, and M.-H. Wang (2018). J. Photochem. Photobiol. B: Biol. 185, 126–135.CrossRefGoogle Scholar
  27. 27.
    K. Saravanakumar and K. Kathiresan (2014). Springer plus 3, 631.CrossRefPubMedGoogle Scholar
  28. 28.
    E. Baldev, D. Mubarakali, K. Saravanakumar, C. Arutselvan, N. S. Alharbi, S. A. Alharbi, V. Sivasubramanian, and N. Thajuddin (2018). Renew. Energy 123, 486–498.CrossRefGoogle Scholar
  29. 29.
    K. Saravanakumar, P. Senthilraja, and K. Kathiresan (2013). J. King Saud Univ. Sci. 25, 121–127.CrossRefGoogle Scholar
  30. 30.
    R. S. Matthews (1995). Free Radic. Biol. Med. 18, 919–922.CrossRefPubMedGoogle Scholar
  31. 31.
    O. Quiroz-Cardoso, S. Oros-Ruiz, A. Solís-Gómez, R. López, and R. Gómez (2019). Fuel 237, 227–235.CrossRefGoogle Scholar
  32. 32.
    F. Chen, X. Zou, C. Chen, Q. Hu, Y. Wei, Y. Wang, B. Xiang, J. Zhang (2019). Ceram . Int. Google Scholar
  33. 33.
    J.-M. Zhu, M. Hosseini, A. Fakhri, S. S. Rad, T. Hadadi, and N. Nobakht (2019). J. Photochem. Photobiol. B: Biol. 191, 75–82.CrossRefGoogle Scholar
  34. 34.
    L. Wang, S. Chen, Y. Ding, Q. Zhu, N. Zhang, and S. Yu (2018). J. Photochem. Photobiol. B: Biol. 178, 424–427.CrossRefGoogle Scholar
  35. 35.
    W. Peng, P. Luo, D. Gui, W. Jiang, H. Wu, and J. Zhang (2018). J. Photochem. Photobiol. B: Biol. 178, 243–248.CrossRefGoogle Scholar
  36. 36.
    K. S. Prasad, T. Amin, S. Katuva, M. Kumari, and K. Selvaraj (2017). Arab. J. Chem. 10, S3929–S3935.CrossRefGoogle Scholar
  37. 37.
    M. Meyns, F. Iacono, C. Palencia, J. Geweke, M. D. Coderch, U. E. A. Fittschen, J. M. Gallego, R. Otero, B. H. Juárez, and C. Klinke (2014). Chem. Mater. 26, 1813–1821.CrossRefGoogle Scholar
  38. 38.
    A. Kar, A. Datta, and A. Patra (2010). J. Mater. Chem. 20, 916–922.CrossRefGoogle Scholar
  39. 39.
    H. J. Bai, Z. M. Zhang, Y. Guo, and G. E. Yang (2009). Colloids. Surf. B. 70, 142–146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kandasamy Saravanakumar
    • 1
  • Xiaowen Hu
    • 1
  • Sekar Vijayakumar
    • 1
  • Myeong-Hyeon Wang
    • 1
    Email author
  1. 1.Department of Medical Biotechnology, College of Biomedical SciencesKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations