Advertisement

Gold Nanoparticles Biosynthesized Using Ginkgo biloba Leaf Aqueous Extract for the Decolorization of Azo-Dyes and Fluorescent Detection of Cr(VI)

  • Ying Liu
  • Liping Huang
  • Sakil MahmudEmail author
  • Huihong LiuEmail author
Original Paper
  • 22 Downloads

Abstract

Gold nanoparticles (AuNPs) are successfully synthesized via a facile and eco-friendly biosynthesis approach. Ginkgo biloba (G. biloba) leaf is an extract used as bio-aqueous solution for the preparation of the AuNPs. Photo-chemically, the G. biloba leaf plays dual roles wherein it serves as reducing and stabilizing agent. Through this approach, the use of toxin-induced chemical is completely avoided making the approach a green chemistry. Several synthetic parameters such as reactant concentration, media pH, reaction time and temperature are optimized which in turn enables the formation of AuNPs with uniform size. Various analytical techniques including scanning electron microscope (SEM), high resolution-transmission electron microscopic (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, fringe spacing and selected area diffraction (SEAD) pattern, and dynamic light scattering (DLS) are used for AuNPs characterization. The AuNPs exhibit cubic structure and spherical shape with average size of 18.95 ± 5.95 nm. The homemade AuNPs show promises in the catalytic decolorization of azo-dyes in the presence of sodium borohydride (NaBH4). In addition, the AuNPs show appreciable sensitivity for the detection of Cr(VI) with a detection limit found to be 0.1–0.8 μM. This study is expected to spur further works on the use of metal nanoparticle for environmental pollution remediation.

Keywords

Gold nanoparticles Ginkgo biloba leaf Biosynthesis Azo-dyes Fluorescence Chromium ion 

Notes

Acknowledgements

The authors thank the kind support of this work from the Innovation Platform Projects of Wuhan Textile University (183052).

References

  1. 1.
    S. Ahmed, S. Ikram, and S. S. Yudha (2016). J. Photochem. Photobiol. B Biol. 161, 141.CrossRefGoogle Scholar
  2. 2.
    T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. A. Asghar, and S. Bhattacharjee (2018). J. Mol. Struct. 1159, 167.CrossRefGoogle Scholar
  3. 3.
    M. Teimouri, F. Khosravi-Nejad, F. Attar, A. A. Saboury, I. Kostova, G. Benelli, and M. Falahati (2018). J. Clean. Prod. 184, 740.CrossRefGoogle Scholar
  4. 4.
    J. Lee, H. Y. Kim, H. Zhou, S. Hwang, K. Koh, D.-W. Han, and J. Lee (2011). J. Mater. Chem. 21, 13316.CrossRefGoogle Scholar
  5. 5.
    R. Mohammadinejad, S. Karimi, S. Iravani, and R. S. Varma (2016). Green Chem. 18, 20.CrossRefGoogle Scholar
  6. 6.
    F. Mares-Briones and G. Rosas (2017). J. Clust. Sci. 28, 1995.CrossRefGoogle Scholar
  7. 7.
    N. Saha and S. D. Gupta (2016). J. Clust. Sci. 27, 1419.CrossRefGoogle Scholar
  8. 8.
    K. B. Narayanan and N. Sakthivel (2008). Mater. Lett. 62, 4588.CrossRefGoogle Scholar
  9. 9.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, and N. He (2007). Nanotechnology 18, 105104.CrossRefGoogle Scholar
  10. 10.
    M. Guo, W. Li, F. Yang, and H. Liu (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 142, 73.CrossRefGoogle Scholar
  11. 11.
    S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577.CrossRefGoogle Scholar
  12. 12.
    E. Pereira, L. Barros, M. Dueñas, A. L. Antonio, C. Santos-Buelga, and I. C. Ferreira (2015). Ind. Crops Prod. 74, 144.CrossRefGoogle Scholar
  13. 13.
    L. Zhang, S. Guo, M. Wang, and L. He (2015). Int. J. Biol. Macromol. 80, 644.CrossRefGoogle Scholar
  14. 14.
    T. A. van Beek and P. Montoro (2009). J. Chromatogr. A 1216, 2002.CrossRefGoogle Scholar
  15. 15.
    Y. Y. Ren, H. Yang, T. Wang, and C. Wang (2016). Phys. Lett. A 380, 3773.CrossRefGoogle Scholar
  16. 16.
    M. Nasrollahzadeh and S. M. Sajadi (2015). J. Colloid Interface Sci. 457, 141.CrossRefGoogle Scholar
  17. 17.
    S. Gurunathan, J. W. Han, J. H. Park, V. Eppakayala, and J. H. Kim (2014). Int. J. Nanomed. 9, 363.CrossRefGoogle Scholar
  18. 18.
    J. L. Zha, C. F. Dong, X. J. Wang, X. L. Zhang, X. H. Xiao, and X. Z. Yang (2017). Optik 144, 511.CrossRefGoogle Scholar
  19. 19.
    Y. Ma, Y. Chen, J. Liu, Y. Han, S. Ma, and X. Chen (2018). Talanta 185, 249.CrossRefGoogle Scholar
  20. 20.
    H. Wang and C. Na (2014). ACS Appl. Mater. Interfaces 6, 20309.CrossRefGoogle Scholar
  21. 21.
    D. Dong, X. Zhao, X. Hua, J. Liu, and M. Gao (2009). J. Hazard. Mater 162, 1261.CrossRefGoogle Scholar
  22. 22.
    L. Zhang, C. Xu, and B. Li (2009). Microchim. Acta 166, 61.CrossRefGoogle Scholar
  23. 23.
    S. Huang, H. Qiu, F. Zhu, S. Lu, and Q. Xiao (2015). Microchim. Acta 182, 1723.CrossRefGoogle Scholar
  24. 24.
    W. Jin, G. Wu, and A. Chen (2014). Analyst 139, 235.CrossRefGoogle Scholar
  25. 25.
    Y. Xiang, L. Mei, N. Li, and A. Tong (2007). Anal. Chim. Acta 581, 132.CrossRefGoogle Scholar
  26. 26.
    D. Li, J. Li, X. Jia, Y. Xia, X. Zhang, and E. Wang (2013). Anal. Chim. Acta 804, 98.CrossRefGoogle Scholar
  27. 27.
    Y. Gu and X. Zhu (2011). Microchim. Acta 173, 433.CrossRefGoogle Scholar
  28. 28.
    V. Arancibia, M. Valderrama, K. Silva, and T. Tapia (2003). J. Chromatogr. B 785, 303.CrossRefGoogle Scholar
  29. 29.
    S. Cathum, C. Brown, and W. Wong (2002). Anal. Bioanal. Chem. 373, 103.CrossRefGoogle Scholar
  30. 30.
    K. Hunger Industrial dyes: chemistry, properties, applications (Wiley, Hoboken, 2007).Google Scholar
  31. 31.
    R. Kant (2012). Nat. Sci. 4, 22.Google Scholar
  32. 32.
    H. Li, Q. Chen, S. Li, W. Yao, L. Li, X. Shi, L. Wang, V. Castranova, V. Vallyathan, and E. Ernst (2001). Ann. Occup. Hyg. 45, 505.CrossRefGoogle Scholar
  33. 33.
    S. Arunkumar and M. Alagiri (2017). J. Clust. Sci. 28, 2635.CrossRefGoogle Scholar
  34. 34.
    I. Safarik, L. Ptackova, and M. Safarikova (2002). Eur. Cells Mater. 3, 52.Google Scholar
  35. 35.
    A. G. Assefa, A. A. Mesfin, M. L. Akele, A. K. Alemu, B. R. Gangapuram, V. Guttena, and M. Alle (2017). J. Clust. Sci. 28, 917.CrossRefGoogle Scholar
  36. 36.
    L. Bo, Y. Zhang, X. Quan, and B. Zhao (2008). J. Hazard. Mater. 153, 1201.CrossRefGoogle Scholar
  37. 37.
    A. K. Chakraborty, S. Ganguli, and M. A. Kebede (2012). J. Clust. Sci. 23, 437.CrossRefGoogle Scholar
  38. 38.
    T. A. van Beek (2002). J. Chromatogr. A 967, 21.CrossRefGoogle Scholar
  39. 39.
    S. Mahmud, M. Z. Sultana, M. N. Pervez, M. A. Habib, and H.-H. Liu (2017). Fibers 5, 35.CrossRefGoogle Scholar
  40. 40.
    Z. Shervani and Y. Yamamoto (2011). Mater. Lett. 65, 92.CrossRefGoogle Scholar
  41. 41.
    S. Mahmud, N. Pervez, M. Z. Sultana, A. Habib, and L. Hui-Hong (2017). Orient. J. Chem. 33, 2198.CrossRefGoogle Scholar
  42. 42.
    B. Yang, J. Chou, X. Q. Dong, C. T. Qu, Q. S. Yu, K. J. Lee, and N. Harvey (2017). J. Phys. Chem. C 121, 8961.CrossRefGoogle Scholar
  43. 43.
    N. Y. Polyakova, A. Y. Polyakov, I. V. Sukhorukova, D. V. Shtansky, and A. V. Grigorieva (2017). Gold Bull. 50, 131.CrossRefGoogle Scholar
  44. 44.
    S. Mahmud, M. N. Pervez, M. A. Habib, M. Z. Sultana, and H.-H. Liu (2018). Asian J. Chem. 30, 116.CrossRefGoogle Scholar
  45. 45.
    S. Y. Cheng, F. Xu, and Y. Wang (2009). J. Med. Plants Res. 3, 1248.Google Scholar
  46. 46.
    I. Vijayashree, P. Niranjana, G. Prabhu, V. Sureshbabu, and J. Manjanna (2017). J. Clust. Sci. 28, 133.CrossRefGoogle Scholar
  47. 47.
    S. H. Koli, B. V. Mohite, H. P. Borase, and S. V. Patil (2017). J. Clust. Sci. 28, 2719.CrossRefGoogle Scholar
  48. 48.
    N. Srivastava and M. Mukhopadhyay (2015). J. Clust. Sci. 26, 675.CrossRefGoogle Scholar
  49. 49.
    V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. H. Liu (2018). IET Nanobiotechnol. 12, 47.CrossRefGoogle Scholar
  50. 50.
    L. S. Duan, M. Li, and H. H. Liu (2015). IET Nanobiotechnol. 9, 349.CrossRefGoogle Scholar
  51. 51.
    Y. Li, G. Li, W. Li, F. Yang, and H. H. Liu (2015). Nano.  https://doi.org/10.1142/S1793292015501088.Google Scholar
  52. 52.
    J. Song, Q. Ma, S. Zhang, Y. Guo, and C. Dong (2016). J. Clust. Sci. 27, 1203.CrossRefGoogle Scholar
  53. 53.
    B. R. Gangapuram, R. Bandi, R. Dadigala, G. M. Kotu, and V. Guttena (2017). J. Clust. Sci. 28, 2873.CrossRefGoogle Scholar
  54. 54.
    C. Rongqi (2002). Dye. Finish. 5, 26–31.Google Scholar
  55. 55.
    Y. Li, G. Li, K. L. Lei, M. Li, and H. H. Liu (2016). Chin. J. Anal. Chem. 44, 773.Google Scholar
  56. 56.
    G. Li, Y. L. Sun, and H. H. Liu (2018). J. Clust. Sci. 29, 177.CrossRefGoogle Scholar
  57. 57.
    E. G. Matveeva, Z. Gryczynski, J. Malicka, J. Lukomska, S. Makowiec, K. W. Berndt, J. R. Lakowicz, and I. Gryczynski (2005). Anal. Biochem. 344, 161.CrossRefGoogle Scholar
  58. 58.
    G. WHO (World Health Organization, 2011) vol. 216, pp. 303.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Resource Regenerating Institute, School of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhanPeople’s Republic of China
  2. 2.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations