Emerging Selenium Nanoparticles to Combat Cancer: a Systematic Review

  • Hossein Vahidi
  • Hamed BarabadiEmail author
  • Muthupandian SaravananEmail author
Review Paper


Cancer remains a major global health problem with significant economic burden on the society. Meanwhile, nanotechnology has attracted significant attention worldwide to combat cancer as a novel strategy. The objective of the present study was to systematically review the anticancer activity of biologically synthesized selenium nanoparticles (SeNPs) through previous laboratory studies. The published articles were collected through online databases including Cochrane, Web of Science, PubMed, Scopus, Embase, Science Direct, and ProQuest. Most of the studies prepared SeNPs using microbial approach. Besides, spherical shaped was the predominant morphology of SeNPs among all studies. In general, biogenic SeNPs represented more cytotoxicity on cancer cells compared to normal cells. This study represented initial evidence for anticancer potential of biogenic SeNPs and provided valuable information in this regard. We also discussed the proposed anticancer mechanisms of SeNPs. These nanomaterials may be developed as next generation anticancer drugs resulting in a revolution in cancer therapeutics.

Graphic Abstract


Cancer nanomedicine Selenium nanoparticles Biosynthesis Systematic review 



This study was funded by a grant from School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran [Grant Number 18231].

Compliance with Ethical Standards

Conflict of interests

The authors declare no conflict of interests.


  1. 1.
    H. Barabadi, O. Hosseini, K. Damavandi Kamali, F. Jazayeri Shoushtari, M. Rashedi, H. Haghi-Aminjan, and M. Saravanan (2019). J. Clust. Sci.. Scholar
  2. 2.
    H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev. 10, 285.CrossRefGoogle Scholar
  3. 3.
    R. L. Siegel, K. D. Miller, and A. Jemal (2019). CA Cancer J. Clin. 69, 7.CrossRefGoogle Scholar
  4. 4.
    J. Ferlay, M. Colombet, I. Soerjomataram, T. Dyba, G. Randi, M. Bettio, A. Gavin, O. Visser, and F. Bray (2018). Eur. J. Cancer. 103, 356.CrossRefGoogle Scholar
  5. 5.
    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci. 30, 715.CrossRefGoogle Scholar
  6. 6.
    H. Barabadi, M. A. Mahjoub, B. Tajani, A. Ahmadi, Y. Junejo, and M. Saravanan (2019). J. Clust. Sci. 30, 259.CrossRefGoogle Scholar
  7. 7.
    S. M. Saravanan, T. Asmalash, A. Gebrekidan, D. Gebreegziabiher, T. Araya, H. Hilekiros, H. Barabadi, and K. Ramanathan (2018). Pharm. Nanotechnol. 6, 17.CrossRefGoogle Scholar
  8. 8.
    H. Barabadi (2017). Cell Mol. Biol. 63, 3.CrossRefGoogle Scholar
  9. 9.
    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran. J. Pharm. Res. 16, 1167.Google Scholar
  10. 10.
    M. Ovais, A. T. Khalil, A. Raza, N. U. Islam, M. Ayaz, M. Saravanan, M. Ali, I. Ahmad, M. Shahid, and Z. K. Shinwari (2018). Appl. Microbiol. Biotechnol. 102, 4393.CrossRefGoogle Scholar
  11. 11.
    M. Shakibaie, M. R. Khorramizadeh, M. A. Faramarzi, O. Sabzevari, and A. R. Shahverdi (2010). Biotechnol. Appl. Biochem. 56, 7.CrossRefGoogle Scholar
  12. 12.
    S. A. Wadhwani, U. U. Shedbalkar, R. Singh, and B. A. Chopade (2016). Appl. Microbiol. Biotechnol. 100, 2555.CrossRefGoogle Scholar
  13. 13.
    P. Srivastava, J. M. Braganca, and M. Kowshik (2014). Biotechnol. Prog. 30, 1480.CrossRefGoogle Scholar
  14. 14.
    H. Barabadi, B. Tajani, M. Moradi, K. Damavandi Kamali, R. Meena, S. Honary, M. A. Mahjoub, and M. Saravanan (2019). J. Clust. Sci. 30, 843.CrossRefGoogle Scholar
  15. 15.
    H. Barabadi and S. Honary (2016). Pharm. Biomed. Res. 2, 1.Google Scholar
  16. 16.
    H. Barabadi, Z. Alizadeh, M. T. Rahimi, A. Barac, A. E. Maraolo, L. J. Robertson, A. Masjedi, F. Shahrivar, and E. Ahmadpour (2019). Nanomedicine 18, 221.CrossRefGoogle Scholar
  17. 17.
    H. Barabadi and S. Honary (2014). Razi J. Med. Sci. 21, 20.Google Scholar
  18. 18.
    S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran. J. Pharm. Res. 18, 430.Google Scholar
  19. 19.
    Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Z. Sabeti Noghabi (2019). Iran. J. Pharm. Res. 18, 210.Google Scholar
  20. 20.
    T. Ramezani, M. Nabiuni, J. Baharara, K. Parivar, and F. Namvar (2019). Iran. J. Pharm Res. 18, 222.Google Scholar
  21. 21.
    M. M. Or Rashid, M. S. Islam, M. A. Haque, M. A. Rahman, M. T. Hossain, and M. A. Hamid (2016). Iran. J. Pharm Res. 15, 591.Google Scholar
  22. 22.
    R. Dobrucka (2017). Iran. J. Pharm Res. 16, 753.Google Scholar
  23. 23.
    Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran. J. Pharm Res. 16, 760.Google Scholar
  24. 24.
    H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran. J. Pharm Res. 17, 87.Google Scholar
  25. 25.
    L. Y. Cruz, D. Wang, and J. Liu (2019). J. Photochem. Photobiol. B 191, 123.CrossRefGoogle Scholar
  26. 26.
    H. Li, D. Liu, S. Li, and C. Xue (2019). Int. J. Biol. Macromol. 129, 818.CrossRefGoogle Scholar
  27. 27.
    C. Xu, L. Qiao, Y. Guo, L. Ma, and Y. Cheng (2018). Carbohydr. Polym. 195, 576.CrossRefGoogle Scholar
  28. 28.
    C. Sivakumar and K. Jeganathan (2018). J. Drug Deliv. Ther. 8, 195.CrossRefGoogle Scholar
  29. 29.
    V. R. Ranjitha and V. R. Ravishankar (2018). Pharm. Nanotechnol. 6, 61.CrossRefGoogle Scholar
  30. 30.
    S. A. Wadhwani, M. Gorain, P. Banerjee, U. U. Shedbalkar, R. Singh, G. C. Kundu, and B. A. Chopade (2017). Int. J. Nanomed. 12, 6841.CrossRefGoogle Scholar
  31. 31.
    K. Anu, G. Singaravelu, K. Murugan, and G. Benelli (2017). J. Clust. Sci. 28, 551.CrossRefGoogle Scholar
  32. 32.
    P. Srivastava and M. Kowshik (2016). Enzyme Microb. Technol. 95, 192.CrossRefGoogle Scholar
  33. 33.
    S. Ramya, T. Shanmugasundaram, and R. Balagurunathan (2015). J. Trace Elem. Med. Biol. 32, 30.CrossRefGoogle Scholar
  34. 34.
    M. S. Ahmad, M. M. Yasser, E. N. Sholkamy, A. M. Ali, and M. M. Mehanni (2015). Int. J. Nanomed. 10, 3389.Google Scholar
  35. 35.
    P. Sonkusre, R. Nanduri, P. Gupta, and S. S. Cameotra (2014). J. Nanomed. Nanotechnol. 5, 194.CrossRefGoogle Scholar
  36. 36.
    H. Forootanfar, M. Adeli-Sardou, M. Nikkhoo, M. Mehrabani, B. Amir-Heidari, A. R. Shahverdi, and M. Shakibaie (2014). J. Trace Elem. Med. Biol. 28, 75.CrossRefGoogle Scholar
  37. 37.
    C. H. Ramamurthy, K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu (2013). Bioprocess Biosyst. Eng. 36, 1131.CrossRefGoogle Scholar
  38. 38.
    N. J. Meropol and K. A. Schulman (2007). J. Clin. Oncol. 25, 180.CrossRefGoogle Scholar
  39. 39.
    R. Luengo-Fernandez, J. Leal, A. Gray, and R. Sullivan (2013). Lancet Oncol. 14, 1165.CrossRefGoogle Scholar
  40. 40.
    A. B. Mariotto, K. R. Yabroff, Y. Shao, E. J. Feuer, and M. L. Brown (2011). J. Natl. Cancer Inst. 103, 117.CrossRefGoogle Scholar
  41. 41.
    R. Sinha, G. J. Kim, S. Nie, and D. M. Shin (2006). Mol. Cancer Ther. 5, 1909.CrossRefGoogle Scholar
  42. 42.
    S. Tran, P.-J. DeGiovanni, B. Piel, and P. Rai (2017). Clin. Transl. Sci. 6, 44.CrossRefGoogle Scholar
  43. 43.
    H. Wang, W. Wei, S. Y. Zhang, Y. X. Shen, L. Yue, N. P. Wang, and S. Y. Xu (2005). J. Pineal Res. 39, 156.CrossRefGoogle Scholar
  44. 44.
    G. S. Kumar, A. Kulkarni, A. Khurana, J. Kaur, and K. Tikoo (2014). Chem. Biol. Interact. 223, 125.CrossRefGoogle Scholar
  45. 45.
    Y. Li, X. Li, Y. S. Wong, T. Chen, H. Zhang, C. Liu, and W. Zheng (2011). Biomaterials 32, 9068.CrossRefGoogle Scholar
  46. 46.
    C. Zhu, S. Zhang, C. Song, Y. Zhang, Q. Ling, P. R. Hoffmann, J. Li, T. Chen, W. Zheng, and Z. Huang (2017). J. Nanobiotechnol. 15, 20.CrossRefGoogle Scholar
  47. 47.
    M. A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal, and S. A. Kenawy (2017). Can. J. Physiol. Pharmacol. 95, 101.CrossRefGoogle Scholar
  48. 48.
    W. Zheng, C. Cao, Y. Liu, Q. Yu, C. Zheng, D. Sun, X. Ren, and J. Liu (2015). Acta Biomater. 11, 368.CrossRefGoogle Scholar
  49. 49.
    S. Zhao, Q. Yu, J. Pan, Y. Zhou, C. Cao, J. M. Ouyang, and J. Liu (2017). Acta Biomater. 54, 294.CrossRefGoogle Scholar
  50. 50.
    M. Kumari, L. Ray, M. P. Purohit, S. Patnaik, A. B. Pant, Y. Shukla, P. Kumar, and K. C. Gupta (2017). Eur. J. Pharm. Biopharm. 117, 346.CrossRefGoogle Scholar
  51. 51.
    Y. Huang, L. He, W. Liu, C. Fan, W. Zheng, Y. S. Wong, and T. Chen (2013). Biomaterials 34, 7106.CrossRefGoogle Scholar
  52. 52.
    X. Wang, K. Sun, Y. Tan, S. Wu, and J. Zhang (2014). Free Radic. Biol. Med. 72, 1.CrossRefGoogle Scholar
  53. 53.
    H. Luo, F. Wang, Y. Bai, T. Chen, and W. Zheng (2012). Colloids Surf. B Biointerfaces 94, 304.CrossRefGoogle Scholar
  54. 54.
    A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh, and C. Godugu (2019). Biomed. Pharmacother. 111, 802.CrossRefGoogle Scholar
  55. 55.
    K. K. Vekariya, J. Kaur, and K. Tikoo (2012). Nanomedicine 8, 1125.CrossRefGoogle Scholar
  56. 56.
    J. Pi, F. Yang, H. Jin, X. Huang, R. Liu, P. Yang, and J. Cai (2013). Bioorg. Med. Chem. Lett. 23, 6296.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biotechnology, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations