Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment

  • Joana C. Pieretti
  • Wallace R. Rolim
  • Fabio F. Ferreira
  • Christiane B. Lombello
  • Mônica H. M. Nascimento
  • Amedea B. SeabraEmail author
Original Paper


Hybrid nanomaterials have been extensively investigated because of the possibility of obtaining multiple functions in one stable entity. The magnetite nanoparticles (Fe3O4 NPs) present unique superparamagnetic properties that enable their application in various fields. Silver nanoparticles (Ag NPs) also stand out in biomedical applications, especially as antitumorigenic and antibacterial agent. The combination of Fe3O4 NPs and Ag NPs in one hybrid nanostructure (Fe3O4@Ag NPs) represents a promising strategy for targeted biomedical applications. Fe3O4@Ag NPs can be synthesized through a green route using natural reagents, as both reducing and capping agent, minimizing the nanomaterial toxicity. In this work, Fe3O4@Ag NPs were synthesized via a green route, and green tea extract was used as the reducing agent of silver ions and capping agent of the obtained Fe3O4@Ag NPs. The nanoparticles were characterized by several techniques confirming the formation of a hybrid composite consisting of 87.1% of Fe3O4 and 12.9% of Ag, with spherical shape and an average size of 25 nm. The cytotoxicity of Fe3O4@Ag NPs was verified against both tumoral and non-tumoral cell lines, demonstrating selective cytotoxicity against tumoral cell line, suggesting a biocompatibility of these nanoparticles. Thus, superparamagnetic hybrid Fe3O4@Ag NPs might find important biomedical applications with targeted antitumorigenic properties.

Graphic Abstract


Superparamagnetic iron oxide nanoparticles Silver nanoparticles Hybrid nanoparticles Fe3O4@Ag NPs Cytotoxicity Antitumorigenic 



We would like to thank Proof Reading Service for professionally proofread the manuscript. The authors thank the financial support provided by CNPq (404815/2018-9, 307664/2015-5) and São Paulo Research Foundation FAPESP (2018/08194-2, 2018/02832-7). We also would like to thank the Multiuser Experimental Center (CEM) from UFABC and Finep for the facilities.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.


  1. 1.
    H. Veisi and F. Ghorbani (2014). Appl. Organomet. Chem. 31, 1–6.Google Scholar
  2. 2.
    C. Ma, J. C. White, J. Zhao, Q. Zhao, and B. Xing (2018). Annu. Rev. Food. Sci. Technol. 9, 129–153.CrossRefGoogle Scholar
  3. 3.
    L. Papa, I. C. de Freitas, C. B. de Aquino, J. C. Pieretti, S. H. Domingues, R. A. Ando, and P. Camargo (2017). Mater. Chem. A 5, 11720–11729.CrossRefGoogle Scholar
  4. 4.
    A. Polyak and T. L. Ross (2017). Curr. Med. Chem. 24, 1–26.Google Scholar
  5. 5.
    R. G. Saratale, G. Benelli, G. Kumar, D. S. Kim, and G. D. Saratale (2018). Environ. Sci. Pollut. Res. 25, 10392–10406.CrossRefGoogle Scholar
  6. 6.
    R. A. Revia and M. Zhang (2015). Biochem. Pharmacol. 10, 157–168.Google Scholar
  7. 7.
    M. M. S. Abdullah, A. M. Atta, H. A. Allohedan, H. Z. Alkahathlan, M. Khan, and A. Ezzat (2018). Nanomaterials 8, 855.CrossRefGoogle Scholar
  8. 8.
    M. Usman, J. M. Byrbe, A. Chaudhary, S. Orsetti, K. Hanna, C. Ruby, A. Kappler, and S. B. Haderlein (2018). Chem. Rev. 118, 3251–3304.CrossRefGoogle Scholar
  9. 9.
    P. S. Haddad, M. C. Santos, C. A. de Guzzi Cassago, J. S. Bernardes, M. B. de Jesus, and A. B. Seabra (2016). J. Nanoparticle Res. 18, 369.CrossRefGoogle Scholar
  10. 10.
    A. R. Nochehdehi, S. Thomas, M. Sadri, S. S. Afghahi, and S. M. Hadavi (2017). J. Nanomed. Nanotechnol. 8, 01.Google Scholar
  11. 11.
    Z. R. Stephen, F. M. Kievit, and M. Zhang (2012). Mater. Today 14, 330–338.CrossRefGoogle Scholar
  12. 12.
    J. Li, R. Cha, Y. Zhang, H. Guo, K. Long, P. Gao, X. Wang, F. Zhou, and X. Jiang (2018). J. Mater. Chem. B. 6, 6413–6423.CrossRefGoogle Scholar
  13. 13.
    Z. Li, M. Kawashita, N. Araki, M. Mitsumori, M. Hiraoka, and M. Doi (2010). Mater. Sci. Eng. C 30, 990–996.CrossRefGoogle Scholar
  14. 14.
    M. S. Baptista and M. Wainwright (2011). Braz. J. Med. Biol. Res. 44, 1–10.CrossRefGoogle Scholar
  15. 15.
    F. Sadeghfar and M. R. Hajinezhad (2018). J. Mol. Liq. 265, 96–104.CrossRefGoogle Scholar
  16. 16.
    A. B. Seabra, T. Pasquôto, A. C. F. Ferrarini, M. C. Santos, P. S. Haddad, and R. Lima (2014). Chem. Res. Toxicol. 27, 1207–1218.CrossRefGoogle Scholar
  17. 17.
    S. M. Ghaseminezhad and S. A. Shojaosadati (2016). Carbohydr. Polym. 144, 454–463.CrossRefGoogle Scholar
  18. 18.
    L. M. Tung, N. X. Cong, L. T. Huy, N. T. Lan, V. N. Phan, N. Q. Hoa, L. K. Vinh, N. V. Thinh, L. T. Tai, D.-T. Ngo, K. Molhave, T. Q. Huy, and A.-T. Le (2016). J. Nanosci. Nanotechnol. 16, 5902–5912.CrossRefGoogle Scholar
  19. 19.
    C. Yong, X. Chen, Q. Xiang, Q. Li, and X. Xing (2018). Bioact Mater 3, 80–86.CrossRefGoogle Scholar
  20. 20.
    Y. Li, J. S. Church, A. L. Woodhead, and F. Moussa (2010). Spectrochim. Acta. Part. A Mol. Biomol. Spectrosc. 76, 484–489.CrossRefGoogle Scholar
  21. 21.
    P. Kucheryavy, J. He, V. T. John, P. Maharjan, L. Spinu, G. Z. Goloverda, and V. L. Kolesnichenko (2013). Langmuir 29, 710–716.CrossRefGoogle Scholar
  22. 22.
    X. Tian, S. Liu, J. Zhu, Z. Qian, and L. Bai (2019). Nanotechnology 30, 1–10.Google Scholar
  23. 23.
    K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnol. 16, 14.CrossRefGoogle Scholar
  24. 24.
    W. R. Rolim, J. C. Pieretti, D. L. S. Renó, B. A. Lima, M. H. M. Nascimento, F. N. Ambrosio, C. B. Lombello, M. Brocchi, A. C. S. de Souza, and A. B. Seabra (2019). Appl. Mater. Interfaces 11, 6589–6604.CrossRefGoogle Scholar
  25. 25.
    H. Veisi, M. Kavian, M. Hekmati, and S. Hemmati (2019). Polyhedron 161, 338–345.CrossRefGoogle Scholar
  26. 26.
    C. Li, Z. Guan, C. Ma, N. Fang, H. Liu, and M. Li (2017). Inorg. Chem. Commun. 84, 246–250.CrossRefGoogle Scholar
  27. 27.
    H. Veisi, L. Mohammadi, S. Hemmati, T. Tamoradi, and P. Mohammadi (2019). ACS Omega 4, 13991–14003.CrossRefGoogle Scholar
  28. 28.
    M. Shahriari, H. Veisi, M. Hekmati, and S. Nemmati (2018). Mat Eng Sci C 90, 57–66.CrossRefGoogle Scholar
  29. 29.
    H. Veisi, M. Ghorbani, and S. Hemmati (2019). Mat. Sci. Eng. C 98, 584–593.CrossRefGoogle Scholar
  30. 30.
    M. V. Efremova, V. A. Naumenko, M. Spasova, A. S. Garanina, M. A. Abakumov, A. D. Blokhina, P. A. Melnikov, A. O. Prelovskaya, M. Heidelmann, Z.-A. Li, Z. Ma, I. V. Shschetinin, Y. I. Golovin, I. I. Kireev, A. G. Savchenko, V. P. Chekhonin, N. L. Klyachko, M. Farle, A. G. Majouga, and U. Wiedwald (2018). Sci Rep 8, 11195.CrossRefGoogle Scholar
  31. 31.
    M. S. Akhtar, J. Panwar, S. Pilani, and Y. Yun (2013). Sustain. Chem. Eng. 1, 591–602.CrossRefGoogle Scholar
  32. 32.
    H. Duan, D. Wang, and Y. Li (2015). Chem. Soc. Rev. 44, 5778–5792.CrossRefGoogle Scholar
  33. 33.
    S. Iravani (2014). Int. Sch. Res. Notices 2014, 18.Google Scholar
  34. 34.
    S. Venkateswarlu, B. N. Kumar, B. Prathima, K. Anitha, and N. V. Jyothi (2015). Phys. B. Condens. Matter 457, 30–35.CrossRefGoogle Scholar
  35. 35.
    W. R. Rolim, M. T. Pelegrino, B. de Lima, L. S. Ferraz, F. N. Costa, J. S. Bernardes, T. Rodigues, M. Brocchi, and A. B. Seabra (2019). Appl. Surf. Sci. 463, 66–74.CrossRefGoogle Scholar
  36. 36.
    A. B. Seabra and N. Durán (2015). Metals 5, 934–975.CrossRefGoogle Scholar
  37. 37.
    C. E. Escárcega-González, J. A. Garza-Cervantes, A. Vázquez-Rodríguez, L. Z. Montelongo-Peralta, M. T. Treviño-Gonzalez, E. D. Castro, E. M. Saucedo-Salazar, R. C. Morales, D. R. Soto, F. T. González, and J. C. Rosales (2018). Int. J. Nanomed. 13, 2349–2363.CrossRefGoogle Scholar
  38. 38.
    S. C. G. K. Daniel, P. Joseph, and M. Sivakumar (2017). Nanosci. Nanotechnol. Asia 7, 1–7.Google Scholar
  39. 39.
    H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr, and S. Hemmati (2019). Polyhedron 157, 232–240.CrossRefGoogle Scholar
  40. 40.
    M. M. Molina, A. B. Seabra, M. G. de Oliveira, R. Itri, and P. S. Haddad (2013). Mat. Sci. Eng. C 33, 746–751.CrossRefGoogle Scholar
  41. 41.
    A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, and R. Rizzi (2015). J. Appl. Crystallogr. 48, 1–6.CrossRefGoogle Scholar
  42. 42.
    D. L. Bish and S. A. Howard (1998). J. Appl. Crystallogr. 21, 86–91.CrossRefGoogle Scholar
  43. 43.
    H. M. Rietveld (1967). Acta Cryst. 22, 151–152.CrossRefGoogle Scholar
  44. 44.
    H. M. Rietveld (1969). J. Appl. Crystallogr. 2, 65–71.CrossRefGoogle Scholar
  45. 45.
    B. Y. M. Iizumi (1969). Acta Crystallogr. B 38, 2121–2133.CrossRefGoogle Scholar
  46. 46.
    J. Spreadborough and L. Holland (1959). J. Sci. Instrum. 36, 116–118.CrossRefGoogle Scholar
  47. 47.
    C. J. Kirkpatrick, F. Bittinger, M. Wagner, H. Köhler, T. G. van Kooten, C. L. Klein, and M. Otto (1998). Proc. Inst. Mech. Eng. H. 212, 75–84.CrossRefGoogle Scholar
  48. 48.
    R. Sharma, D. P. Bisen, U. Shukla, and B. G. Sharma (2012). Recent Res. Sci. Technol. 4, 77–79.Google Scholar
  49. 49.
    L. C. Gonçalves, A. B. Seabra, M. T. Pelegrino, D. R. de Araujo, J. S. Bernardes, and P. S. Haddad (2017). RSC Adv. 7, 14496–14503.CrossRefGoogle Scholar
  50. 50.
    N. T. Nguyen, D. L. Tran, D. C. Nguyen, T. L. Nguyen, T. C. Ba, B. H. Nguyen, T. D. Ba, N. H. Pham, D. T. Nguyen, T. H. Tran, and G. D. Pham (2018). Curr. Appl. Phys. 15, 1482–1487.CrossRefGoogle Scholar
  51. 51.
    V. Ahluwalia, S. Elumalai, V. Kumar, S. Kumar, and R. S. Sangwan (2017). Microb. Pathog. 114, 402–408.CrossRefGoogle Scholar
  52. 52.
    B. Banumathi, B. Vaseeharan, P. Suganya, T. Citarasu, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Clust. Sci. 28, 2027–2040.CrossRefGoogle Scholar
  53. 53.
    D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed (2003). Chem. Mater. 15, 1617–1627.CrossRefGoogle Scholar
  54. 54.
    W. Jiang and K. L. Hao (2011). J. Nanopart. Res. 13, 5135–5145.CrossRefGoogle Scholar
  55. 55.
    O. Ivashchenko, M. Lewandowski, B. Peplińska, M. Jarek, G. Nowaczyk, M. Wiesner, K. Załęski, T. Babutina, A. Warowicka, and S. Jurga (2015). Mater. Sci. Eng. C 55, 343–359.CrossRefGoogle Scholar
  56. 56.
    S. A. Ansari, J. Lee, and M. H. Cho (2013). J. Phys. Chem. 117, 27023–27030.Google Scholar
  57. 57.
    A. Pachla, Z. Landzion-Bielun, D. Moszinsky, A. Markowska-Szczupak, U. Narkiewicz, R. J. Wróbel, N. Guskus, and G. Zolnierkiewicz (2016). Pol. J. Chem. Technol. 18, 110–116.CrossRefGoogle Scholar
  58. 58.
    P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, and Y. Liu (2011). Nanoscale 3, 3357–3363.CrossRefGoogle Scholar
  59. 59.
    X. Wang, A. Deng, W. Cao, Q. Li, L. Wang, J. Zhou, B. Hu, and X. Xing (2018). J. Mater. Sci. 53, 6433–6449.CrossRefGoogle Scholar
  60. 60.
    X. N. Pham, T. P. Nguyen, T. N. Pham, T. T. N. Tran, and T. V. T. Tran (2016). Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 1–9.Google Scholar
  61. 61.
    A. Homayoun and K. Hamed (2017). Appl. Organomet. Chem. 31, e3873.CrossRefGoogle Scholar
  62. 62.
    G. R. Iglesias, A. V. Delgado, F. González-Caballero, and M. M. Ramos-Tejada (2017). J. Magn. Magn. Mater 431, 294–296.CrossRefGoogle Scholar
  63. 63.
    M. T. Pelegrino, B. de Lima, M. Nascimento, C. Lombello, M. Brocchi, and A. B. Seabra (2018). Polymers (Basel) 10, 452.CrossRefGoogle Scholar
  64. 64.
    S. Khaghani and D. Ghanbari (2016). J. Mater. Sci.Mater. Electron. 28, 2877–2886.CrossRefGoogle Scholar
  65. 65.
    M. Sajjadi, M. Nasrollahzadeh, and S. M. Sajadi (2017). J. Colloid Interface Sci. 497, 1–13.CrossRefGoogle Scholar
  66. 66.
    W. Fang, J. Zheng, C. Chen, H. Zhang, Y. Lu, L. Ma, and G. Chen (2014). J. Magn. Magn. Mater. 357, 1–6.CrossRefGoogle Scholar
  67. 67.
    R. Ramesh, M. Geerthana, S. Prabhu, and S. Sohila (2016). J. Clust. Sci. 28, 963–969.CrossRefGoogle Scholar
  68. 68.
    M. V. Efremova, V. A. Naumenko, M. Spasova, A. S. Garanina, M. A. Abakumov, A. D. Blokhina, P. A. Melnikov, O. P. Alexandra, M. Heidelmann, Z. Li, Z. Ma, I. V. Shchetinin, Y. I. Golovin, I. I. Kireev, A. G. Savchenko, V. P. Chekhonin, N. L. Klyachko, M. Farle, A. G. Majouga, and U. Wiedwald (2018). Sci. Rep. 8, 11295.CrossRefGoogle Scholar
  69. 69.
    A. B. Seabra, N. Manosalva, B. De Lima, M. T. Pelegrino, M. Brocchi, O. Rubilar, and N. Duran (2017). J. Phys. Conf. Ser. 838, 01203.Google Scholar
  70. 70.
    Q. Ding, D. Liu, D. Guo, F. Yang, X. Pang, R. Che, N. Zhou, J. Xie, J. Sun, Z. Huang, and N. Gu (2017). Biomaterials 124, 35–46.CrossRefGoogle Scholar
  71. 71.
    O. Ivashchenko, E. Coy, B. Peplinska, M. Jarek, M. Lewandowski, K. Zaleski, A. Waeowicka, A. Wozniak, T. Babutina, J. Jurga-Stopa, J. Dolinsek, and S. Jurga (2017). Nanotechnology 28, 055603.CrossRefGoogle Scholar
  72. 72.
    H. Wang, J. Shen, G. Cao, Z. Gai, K. Hong, P. Debata, P. Banerjee, and S. Zhou (2013). J. Mater. Chem. B 1, 6225–6234.CrossRefGoogle Scholar
  73. 73.
    P. Kaur, R. Thakur, H. Malwal, A. Manuja, and A. Chaudhury (2018). Biocatal. Agric Biotechnol. 14, 189–197.CrossRefGoogle Scholar
  74. 74.
    K. Zoromodian, H. Veisi, S. M. Mousavi, M. S. Ataabadi, S. Yasdanpanah, J. Bagheri, A. P. Mehr, S. Hemmati, and H. Veisi (2018). Int. J. Nanomedicine 13, 3965–3973.CrossRefGoogle Scholar
  75. 75.
    S. Goyal, N. Gupta, A. Kumar, S. Chatterjee, and S. Nimesh (2018). IET Nanobiotechnol. 12, 526–533.CrossRefGoogle Scholar
  76. 76.
    W. Kai, X. Xiaojun, X. Pu, H. Zhenqing, and Z. Qiqing (2011). Nanoscale Res. Lett. 6, 480.CrossRefGoogle Scholar
  77. 77.
    D. McShan, P. C. Ray, and H. Yu (2014). J. Food Drug Anal. 22, 116–127.CrossRefGoogle Scholar
  78. 78.
    Z. Zhang, Z. Liu, Z. Lou, F. Chen, S. Chang, Y. Miao, Z. Zhou, X. Hu, J. Feng, Q. Ding, P. Liu, N. Gu, and H. Zhang (2018). Artifi. Cells. Nanomed Biotechnol. 46, 5975.Google Scholar
  79. 79.
    X. Cheng, W. Zhang, Y. Ji, J. Meng, H. Guo, J. Liu, X. Wu, and H. Xu (2013). RSC Adv. 3, 2296–2305.CrossRefGoogle Scholar
  80. 80.
    D. S. Arumai, D. Mahendiran, R. K. Senthil, and A. R. Kalilur (2018). Garlic J. Photochem. Photobiol. B. Biol. 180, 243–252.CrossRefGoogle Scholar
  81. 81.
    A. Haase, S. RotT, A. Mantion, P. Graf, J. Plendi, A. F. Thünemann, W. P. Meier, A. Taubert, A. Luch, and G. Reiser (2018). Toxicol. Sci. 126, 457–468.CrossRefGoogle Scholar
  82. 82.
    D. He, J. J. Dorantes-Aranda, and T. D. Waite (2012). Environ. Sci. Technol. 46, 8731–8738.CrossRefGoogle Scholar
  83. 83.
    J.-Y. Roh and H.-J. Eom (2012). Toxicol. Res 28, 19e24.CrossRefGoogle Scholar
  84. 84.
    T. Shi, X. Sun, and Q.-Y. He (2018). Curr. Protein Pept. Sci. 19, 525–536.CrossRefGoogle Scholar
  85. 85.
    E. Zielinska, A. Zauszkiewicz-Pawlak, M. Wojcik, and I. Inkielewicz-Stepniak (2018). Oncotarget 9, 4675–4697.CrossRefGoogle Scholar
  86. 86.
    E. Lengert, A. Kozlova, A. Pavlov, and T. V. Bukreeva (2019). Mat. Sci. Eng. C 98, 1114–1121.CrossRefGoogle Scholar
  87. 87.
    C. G. England, M. C. Miller, A. Kuttan, J. O. Trent, and H. B. Frieboes (2016). Eur. J. Pharm. Biopharm. 92, 120–129.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joana C. Pieretti
    • 1
  • Wallace R. Rolim
    • 1
  • Fabio F. Ferreira
    • 1
    • 2
    • 3
  • Christiane B. Lombello
    • 2
    • 3
  • Mônica H. M. Nascimento
    • 1
  • Amedea B. Seabra
    • 1
    • 3
    Email author
  1. 1.Center for Natural and Human Sciences (CCNH)Federal University of ABC (UFABC)Santo AndréBrazil
  2. 2.Center for Engineering, Modeling and Applied Social Science (CECS)Federal University of ABC (UFABC)Santo AndréBrazil
  3. 3.Nanomedicine Research Unit (NANOMED)Federal University of ABC (UFABC)Santo AndréBrazil

Personalised recommendations