Bioactive and Biocompatible Nature of Green Synthesized Zinc Oxide Nanoparticles from Simarouba glauca DC.: An Endemic Plant to Western Ghats, India

  • N. K. Hemanth Kumar
  • M. Murali
  • A. Satish
  • S. Brijesh Singh
  • H. G. Gowtham
  • H. M. Mahesh
  • T. R. Lakshmeesha
  • K. N. AmrutheshEmail author
  • Shobha JagannathEmail author
Original Paper


Zinc-oxide nanoparticles (ZnO-NPs) synthesized from plant extracts are considered to possess superior biological activities compared to chemically synthesized nanoparticles and are of immediate interest to pharmaceutical and agriculture industries. The current study reports the green synthesis of ZnO-NPs from the aqueous leaf extract of Simarouba glauca for the first time. The physico-chemical characterization revealed hexagonal shaped nanoparticles with a size of ~ 17 to 37 nm calculated by Scherrer’s formula with a purity of 98.51%. The FT-IR results confirmed that functional groups present in the plant extract had coagulated well to form a metal oxide during the synthesis process. The antioxidant potential of green synthesized ZnO-NPs evaluated by different methods revealed significant (p ≤ 0.05) radical scavenging activity (5% to 59%) with IC50 value falling between 400 and 500 µg mL−1 among the test methods. The green synthesized nanoparticles also inhibited the mitotic cell division up to 17.46% with increase in concentration. Further, the haemolytic assay by spectroscopic analysis affirmed the biocompatible nature of the nanoparticles which was also evidenced through SEM studies. The present findings indicate that the green synthesized ZnO-NPs from S. glauca possess antioxidant and antimitotic properties apart from possessing biocompatible nature to RBCs thereby warranting in vivo studies.

Graphic Abstract


Antioxidant Antimitotic Chromosomal aberrations Human RBCs Nanoparticles 



The author M. Murali would like to acknowledge the University Grants Commission (UGC)- New Delhi, India for providing the financial support under UGC Post-Doctoral Fellowship (No. F/PDFSS-2015-17-KAR-11846). The authors are also thankful to University with Potential for Excellence (UPE) Project authorities and Department of Studies in Botany, University of Mysore for providing facilities.

Supplementary material

10876_2019_1669_MOESM1_ESM.docx (525 kb)
Supplementary material 1 (DOCX 525 kb)


  1. 1.
    M. Fakruddin, Z. Hossain, and H. Afroz (2012). J. Nanobiotechnol. 10, 31.CrossRefGoogle Scholar
  2. 2.
    M. Murali, C. Mahendra, Nagabhushan, N. Rajashekar, M. S. Sudarshana, K. A. Raveesha and K. N. Amruthesh (2017). Spectrochim Acta A Mol. Biomol. Spectrosc. 15, 104.CrossRefGoogle Scholar
  3. 3.
    P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanoparticles Res. 10, 507.CrossRefGoogle Scholar
  4. 4.
    X. Li, H. Xu, Z. Chen, and G. Chen (2011). J. Nanomaterials, 2011, 270974.Google Scholar
  5. 5.
    D. Suresh, R. M. Shobharani, P. C. Nethravathi, M. A. Pavan-Kumar, H. Nagabhushana, and S. C. Sharma (2015). Spectrochim Acta A Mol. Biomol. Spectrosc. 141, 128.CrossRefPubMedGoogle Scholar
  6. 6.
    S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Prog Nat Sci Mater Int. 22, 693.CrossRefGoogle Scholar
  7. 7.
    M. Stan, A. Popa, D. Toloman, T. D. Silipas, and D. C. Vodnar (2016). Acta. Metal. Sin. 29, 228.CrossRefGoogle Scholar
  8. 8.
    D. Sharma, M. I. Sabela, S. Kanchi, P. S. Mdluli, G. Singh, T. A. Stenstrom, and K. Bisetty (2016). J. Photochem. Photobiol. B: Biol. B. 162, 199.CrossRefGoogle Scholar
  9. 9.
    K. Nithya and S. Kalyanasundharam (2019). OpenNano. 1, 100024.CrossRefGoogle Scholar
  10. 10.
    A. Happy, M. Soumya, S. V. Kumar, S. Rajeshkumar, R. D. Sheba, T. Lakshmi, and V. D. Nallaswamy (2019). Biochem. Biophy. Rep. 1, 208.Google Scholar
  11. 11.
    S. Fakhari, M. Jamzad, and H. Kabiri Fard (2019). Green Chem. Lett. Rev. 2, 19.CrossRefGoogle Scholar
  12. 12.
    P. S. Mansi and D. K. Gaikwad (2011). J. Pharm. Sci. Res. 3, 1195.Google Scholar
  13. 13.
    K. Ashwani, T. Gaurav, S. Sunayana, V. Kumar, and R. Pundir (2014). Int. J. Pharmacognosy 1, 735.Google Scholar
  14. 14.
    J. S. Gamble Flora of the Presidency of Madras, vol. 3 (BSI, Calcutta, 1935).Google Scholar
  15. 15.
    A. Serpen, E. Capuano, V. Fogliano, and V. Gokmen (2007). J. Agri. Food Chem. 55, 7676.CrossRefGoogle Scholar
  16. 16.
    E. A. Shalaby and S. M. M. Shanab (2013). Indian J. Geo-Mar Sci. 42, 556.Google Scholar
  17. 17.
    R. J. Ruch, S. J. Cheng, and E. Klaunig (1989). Carcinogenesis 10, 1003.CrossRefPubMedGoogle Scholar
  18. 18.
    M. Nishikimi, N. A. Rao, and K. Yagi (1972). Biochem. Biophys. Res. Commun. 46, 849.CrossRefPubMedGoogle Scholar
  19. 19.
    G. Fiskesjo (1985). Hereditas 102, 99.CrossRefPubMedGoogle Scholar
  20. 20.
    T. V. Surendra, S. M. Roopan, N. A. Al-Dhabi, M. V. Arasu, G. Sarkar, and K. Suthindhiran (2016). Nanoscale Res. Lett. 11, 546.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    S. Kalita, R. Kandimalla, B. Devi, B. Kalita, K. Kalita, M. Deka, A. C. Kataki, A. Sharma, and J. Kotoky (2017). RSC Adv. 7, 1749.CrossRefGoogle Scholar
  22. 22.
    S. Passi, O. De Pita, P. Puddu, and G. P. Littarru (2002). Free Radic. Res. 36, 477.CrossRefGoogle Scholar
  23. 23.
    B. Auffray (2007). Int. J. Cosmet. Sci. 29, 29.CrossRefGoogle Scholar
  24. 24.
    L. Medina-Ramirez, S. Bashir, Z. Luo, and J. L. Liu (2009). Colloids Surf. B. 73, 185.CrossRefGoogle Scholar
  25. 25.
    A. K. Jha and K. Prasad (2010). Int. J. Green Nanotechnol. Phys. Chem. 1, 110.CrossRefGoogle Scholar
  26. 26.
    R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, and S. I. Hong (2014). Mater. Lett. 1, 170.CrossRefGoogle Scholar
  27. 27.
    T. Karnanm and S. A. Selvakumar (2016). J. Mol. Struct. 5, 358.CrossRefGoogle Scholar
  28. 28.
    S. Jafarirad, M. Mehrabi, B. Divband, and M. Kosari-Nasab (2016). Mater. Sci. Eng. C. 59, 296.CrossRefGoogle Scholar
  29. 29.
    Y. H. Ni, X. W. Wei, J. M. Hong, and Y. Ye (2005). Mater. Sci. Eng. B. 151, 42.CrossRefGoogle Scholar
  30. 30.
    R. Seshadri, in: Rao A CNR, Muller AK Cheetham (eds.), The Chemistry of Nanomaterials, vol 1, (Wiley-VCH Verlag GmbH, Weinheim 2004), p. 94.Google Scholar
  31. 31.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamed (2015). Nano-Micro Lett. 7, 219.CrossRefGoogle Scholar
  32. 32.
    T. R. Lakshmeesha, M. K. Sateesh, B. D. Prasad, S. C. Sharma, D. Kavyashree, M. Chandrashekar, and H. Nagabushana (2014). Cryst. Growth Des. 14, 4068.CrossRefGoogle Scholar
  33. 33.
    C. Mahendra, M. Murali, G. Manasa, P. Ponnamma, M. R. Abhilash, T. R. Lakshmeesha, A. Satish, K. N. Amruthesh, and M. S. Sudarshana (2017). Microbial Pathogenesis. 110, 620.CrossRefPubMedGoogle Scholar
  34. 34.
    H. Sawada, R. Wang, and A. W. Sleight (1996). J. Solid. State Chem. 122, 150.CrossRefGoogle Scholar
  35. 35.
    S. R. Senthilkumar and T. Sivakumar (2015). Int. J. Pharm. Sci. 6, 461.Google Scholar
  36. 36.
    V. Lobo, A. Patil, A. Phatak, and N. Chandra (2010). Pharmacognosy Rev. 4, 118.CrossRefGoogle Scholar
  37. 37.
    A. Thenmozhi, A. Nagalakshmi, and U. Mahadeva Rao (2011). Int. J. Sci. Technol 1, 26–47.Google Scholar
  38. 38.
    N. H. Kumar, J. D. Andia, S. Manjunatha, M. Murali, K. N. Amruthesh, and S. Jagannath (2018). Biocatal. Agricult. Biotechnol. 1, 101024.Google Scholar
  39. 39.
    S. Ananda Soubhagya (2014). Am. Chem. Sci. J. 4, 616.CrossRefGoogle Scholar
  40. 40.
    T. C. Taranath, B. N. Patil, T. U. Santosh, and B. S. Sharath (2015). Env. Sci. Pol. Res. 22, 8611.CrossRefGoogle Scholar
  41. 41.
    D. Pan, O. Vargas-Morales, B. Zern, A. C. Anselmo, V. Gupta, M. Zakrewsky, S. Mitragotri, and V. Muzykantov (2016). PloS ONE 11, 0152074.Google Scholar
  42. 42.
    J. Autian in R. Kronenthal (ed.), Polymers in Medicine and Surgery, vol. 8 (Springer, New York, 1975), pp. 181–203.CrossRefGoogle Scholar
  43. 43.
    E. P. Babu, A. Subastri, A. Suyavaran, K. Premkumar, V. Sujatha, B. Aristatile, G. M. Alshammari, V. Dharuman, and C. Thirunavukkarasu (2017). Sci. Rep. 7, 4203.CrossRefGoogle Scholar
  44. 44.
    D. Das, B. C. Nath, P. Phukon, and S. K. Dolui (2013). Colloids Surf. B. 111, 556–560.CrossRefGoogle Scholar
  45. 45.
    G. K. Prashanth, P. A. Prashanth, B. M. Nagabhushana, S. Ananda, H. G. Nagendra, and C. Rajendra Singh (2016). Adv. Sci. Eng. Med. 8, 306–313.CrossRefGoogle Scholar
  46. 46.
    M. A. Dobrovolskaia, J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, and S. E. McNeil (2008). Nano Lett. 8, 2180.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. K. Hemanth Kumar
    • 1
  • M. Murali
    • 2
  • A. Satish
    • 3
  • S. Brijesh Singh
    • 4
  • H. G. Gowtham
    • 4
  • H. M. Mahesh
    • 2
  • T. R. Lakshmeesha
    • 4
  • K. N. Amruthesh
    • 2
    Email author
  • Shobha Jagannath
    • 1
    Email author
  1. 1.Environmental Biology and Ecotoxicology Laboratory, Department of Studies in BotanyUniversity of MysoreMysuruIndia
  2. 2.Applied Plant Pathology Laboratory, Department of Studies in BotanyUniversity of MysoreMysuruIndia
  3. 3.Department of Studies in Food Science and NutritionUniversity of MysoreMysuruIndia
  4. 4.Department of Studies in BiotechnologyUniversity of MysoreMysuruIndia

Personalised recommendations