Luminescent Pr(III)-Based Coordination Polymer: Syntheses, Structures, N2 and CO2 Adsorption Properties

  • Qiang Liu
  • Yuqi LiuEmail author
  • Qingqing Zhang
  • Xinying Wang
  • Wei LiEmail author
Original Paper


A new Pr(III)-based metal organic framework with formula {[Pr2(C8H3O6N)(SO4)2]·5H2O}n was hydrothermally synthesized and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), thermogravimetric analysis (TGA), elemental analysis, powder X-ray diffraction (PXRD), and luminescent measurements. X-ray crystal structure analyses reveal that complex 1 is binuclear structure and all Pr(III) atoms show a coordination number of nine with a tricapped trigonal prismatic coordination geometry. Throughout the molecular structure, this lanthanide metal–organic frameworks exhibits a 3D architecture built by the 1D double-stranded chains of Pr ions linked by the 5-nitroisophthalic acid ligand and 2D Pr–SO42− grid. In addition, the fluorescence, nitrogen adsorption properties and carbon dioxide adsorption properties of complex 1 were also investigated. The results indicate that the complex is not only a luminescent and mesoporous material, but also a potential material for selective absorption of carbon dioxide.


Pr-based compound Single crystal structure Luminescence Carbon dioxide adsorption Nitrogen adsorption 


Supplementary material

10876_2019_1667_MOESM1_ESM.docx (194 kb)
Supplementary material 1 (DOCX 193 kb)


  1. 1.
    S. Dang, Q. L. Zhu, and Q. Xu (2017). Nat. Mater. 3, 17075.CrossRefGoogle Scholar
  2. 2.
    A. Dey, D. Bairagi, and K. Biradha (2017). Cryst. Growth Des. 17, 3885.CrossRefGoogle Scholar
  3. 3.
    D. M. Chen, N. N. Zhang, C. S. Liu, Z. H. Jiang, X.-D. Wang, and M. Du (2017). Inorg. Chem. 56, 2379.CrossRefGoogle Scholar
  4. 4.
    R. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen, and T. D. Bennett (2017). Nat. Mater. 16, 1149.CrossRefGoogle Scholar
  5. 5.
    K. K. Bisht, B. Parmar, Y. Rachuri, A. C. Kathalikattil, and E. Suresh (2015). CrystEngComm 17, 5341.CrossRefGoogle Scholar
  6. 6.
    S. S. Zhao, J. Yang, Y. Y. Liu, and J. F. Ma (2016). Inorg. Chem. 55, 2261.CrossRefGoogle Scholar
  7. 7.
    L. Zhu, X. Q. Liu, H. L. Jiang, and L. B. Sun (2017). Chem. Res. 117, 8129.Google Scholar
  8. 8.
    J. X. Yang, Y. Qin, and J. K. Cheng (2014). Cryst. Growth Des. 14, 1047.CrossRefGoogle Scholar
  9. 9.
    H. Lei, L. Yan-Yong, and C. Xiao-Ming (2013). Inorg. Chem. 47, 1346.Google Scholar
  10. 10.
    N. S. Bobbitt, M. L. Mendonca, T. I. Ashlee, J. Howarth, J. T. Hupp, O. K. Farha, and R. Q. Snurr (2017). Chem. Soc. Rev. 46, 3357.CrossRefGoogle Scholar
  11. 11.
    J. Zhang and Z. Chen (2017). J. Chromatogr. A 1530, 1.CrossRefGoogle Scholar
  12. 12.
    S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, and H.-C. Zhou (2018). Adv. Mater. 30, 1704303.CrossRefGoogle Scholar
  13. 13.
    F. Luo, J. Zou, and Y. Ning (2011). CrystEngComm 13, 421.CrossRefGoogle Scholar
  14. 14.
    Y. Yang, C. Tu, and F. Cheng (2013). CrystEngComm 15, 7121.CrossRefGoogle Scholar
  15. 15.
    B. Zhao, L. Yi, Y. Dai, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, and Z. H. Jiang (2005). Inorg. Chem. 44, 911.CrossRefGoogle Scholar
  16. 16.
    J. W. Ye, P. Zhang, K. Q. Ye, W. R. Yin, L. Ye, G. D. yang, and Y. Wang (2006). Inorg. Chem. Commun. 9, 744.CrossRefGoogle Scholar
  17. 17.
    Y. X. Ren, S. P. Chen, S. L. Gao, and Q. Z. Shi (2006). Inorg. Chem. Commun. 9, 649.CrossRefGoogle Scholar
  18. 18.
    K. Sardar, M. R. Lees, R. J. Kashtiban, J. Sloan, and R. I. Walton (2011). Chem. Mater. 23, 48.CrossRefGoogle Scholar
  19. 19.
    B. Panda, G. Glaspell, and M. S. El-Shall (2007). J. Phys. Chem. C 111, 1861.CrossRefGoogle Scholar
  20. 20.
    P. Nandi, A. Srinivasan, and G. Jose (2009). Opt. Mater. 31, 653.CrossRefGoogle Scholar
  21. 21.
    I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham (2011). J. Mater. Chem. 21, 1387.CrossRefGoogle Scholar
  22. 22.
    Y. P. Li, J. H. Zhang, X. Zhang, Y. S. Luo, S. Z. Lu, Z. D. Hao, and X. J. Wang (2009). J. Phys. Chem. C 113, 17705.CrossRefGoogle Scholar
  23. 23.
    J. C. Frias, G. Bobba, M. J. Cann, C. J. Hutchinson, and D. Parker (2003). Org. Biomol. Chem. 1, 905.CrossRefGoogle Scholar
  24. 24.
    M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk (2002). Appl. Phys. Lett. 81, 3924.CrossRefGoogle Scholar
  25. 25.
    J. P. Duan, P. P. Sun, and C. H. Cheng (2003). Adv. Mater. 15, 224.CrossRefGoogle Scholar
  26. 26.
    W. Pan, C. H. Gong, X. H. Zeng, C. Y. Hu, Y. Zhang, D. R. Zhu, H. Xu, H. Y. Guo, J. Y. Zhang, and J. L. Xie (2019). Polyhedron 169, 24.CrossRefGoogle Scholar
  27. 27.
    S. M. Sheta, S. M. El-Sheikh, and M. M. Abd-Elzaher (2019). Anal. Bioanal. Chem. 411, 1399.CrossRefGoogle Scholar
  28. 28.
    H. Huang, W. Gao, X. M. Zhang, A. M. Zhou, and J. P. Liu (2019). CrystEngComm 21, 694.CrossRefGoogle Scholar
  29. 29.
    L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, and H. Puschmannb (2015). Acta Crystallogr. Sect. A 71, 59.CrossRefGoogle Scholar
  30. 30.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. A 71, 3.CrossRefGoogle Scholar
  31. 31.
    J. W. Ye, J. Y. Zhang, G. L. Ning, G. Tian, Y. Chen, and Y. Wang (2008). Cryst. Growth Des. 8, 3098.CrossRefGoogle Scholar
  32. 32.
    J. J. Wang, Y. J. Zhang, F. Jin, E. N. Wang, M. Y. Zhang, and J. Chen (2016). Russ. J. Coord. Chem. 42, 316.CrossRefGoogle Scholar
  33. 33.
    J. Chai, P. Zhang, J. N. Xu, H. Qi, J. Sun, S. B. Jing, X. D. Chen, Y. Fan, and L. Wang (2018). Inorg. Chim. Acta. 479, 165.CrossRefGoogle Scholar
  34. 34.
    A. Michaelides, S. Skoulika, E. G. Bakalbassis, and J. Mrozinski (2003). Cryst. Growth Des. 3, 487.CrossRefGoogle Scholar
  35. 35.
    M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing (2015). Pur. Appl. Chem. 87, 1051.CrossRefGoogle Scholar
  36. 36.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, vol. 42 (Academic Press, London, 1982), pp. 42–112.Google Scholar
  37. 37.
    C. L. Zhang, L. Qin, Z. Z. Shi, and H. G. Zheng (2015). Dalton Trans. 44, 4238.CrossRefGoogle Scholar
  38. 38.
    M. S. Chen, M. Chen, T.-A. Okamura, W. Y. Sun, and N. Ueyama (2011). Microporous Mesoporous Mater. 139, 25.CrossRefGoogle Scholar
  39. 39.
    Z. J. Wang, L. J. Han, X. J. Gao, and H. G. Zheng (2018). Inorg. Chem. 57, 5232.CrossRefGoogle Scholar
  40. 40.
    N. P. Wickramaratne and M. Jaroniec (2013). ACS Appl. Mater. 5, 1849.CrossRefGoogle Scholar
  41. 41.
    N. P. Wickramaratne and M. Jaroniec (2013). J. Mater. Chem. A 1, 112.CrossRefGoogle Scholar
  42. 42.
    L. Liu, Q. F. Deng, X. X. Hou, and Z. Y. Yuan (2012). J. Mater. Chem. 22, 15540.CrossRefGoogle Scholar
  43. 43.
    A. A. Gelacio, H. R. Guadalupe, F. L. Erika, U. C. Alejandra, S. G. Rutilo, T. M. Cristobal, J. L. Antonio, and R. C. Enrique (2001). J. Phys. Chem. B 105, 1313.CrossRefGoogle Scholar
  44. 44.
    F. N. Ridha, Y. Yang, and P. A. Webley (2009). Microporous Mesoporous Mater. 117, 497.CrossRefGoogle Scholar
  45. 45.
    A. M. Ajlouni, Z. A. Taha, K. A. Al-Hassan, and A. M. Abu Anzeh (2012). J. Lumin. 132, 1357.CrossRefGoogle Scholar
  46. 46.
    L. Lekha, K. K. Raja, G. Rajagopal, and D. Easwaramoorthy (2014). J. Mol. Struct. 1056, 307.CrossRefGoogle Scholar
  47. 47.
    Z. A. Taha, A. M. Ajlouni, A. K. Hijazi, N. A. Al-Rawashdeh, K. A. Al-Hassan, Y. A. Al-Haj, M. A. Ebqa’ai, and A. Y. Altalafha (2015). J. Lumin. 161, 229.CrossRefGoogle Scholar
  48. 48.
    G. Wang, T. Y. Song, Y. Fan, W. Wan, J. N. Xu, and L. Wang (2010). Inorg. Chem. Commun. 13, 935.CrossRefGoogle Scholar
  49. 49.
    X. J. Zhang, Q. R. Fang, and G. S. Zhu (2010). J. Mol. Struct. 969, 208.CrossRefGoogle Scholar
  50. 50.
    S. P. Chen, Y. X. Ren, and S. L. Gao (2008). Russ. J. Coord. Chem. 34, 301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ScienceKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.The State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunmingPeople’s Republic of China
  3. 3.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations