Advertisement

Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata

  • Mohammad Forouhar Vajargah
  • Ahmad Mohamadi Yalsuyi
  • Masoud Sattari
  • Marko D. Prokić
  • Caterina FaggioEmail author
Original Paper
  • 6 Downloads

Abstract

The purpose of the present study was to evaluate acute and chronic effects of CuO-NPs on survival rate and reproductive success of mature guppy (Poecilia reticulata) and their larvae. During the acute toxicity test, mature fish and their larvae were exposed to series of different concentrations of (0, 5, 10, 15, 20, 25, 30, 35, 40 and 45 mg L−1) CuO-NPs for 96 h and during the chronic phase we exposed mature individuals to 0, 5, 10 mg L−1 of CuO-NPs for 8 weeks. Results showed a significant correlation between mortality rate and CuO-NPs concentrations. Furthermore, the LC50 96 h of CuO-NP for mature and larvae of P. reticulata were 28.354 and 5.649 mg L−1, respectively. Finally, the fish exposed to series of CuO-NP concentrations exhibited various clinical signs such as darkening of skin, anxiety and death with open mouth. Chronic exposure affected reproductive traits of fish, with greatest effects reported in treatment with 10 mg L−1 of CuO-NPs. Those individuals had lowest reproductive success, prolonged parturition time and highest mortality rate. Results highlight toxic potential of CuO-NPs on mature and larvae fish, both increased mortality rate and lower reproductive success, by increasing parturition time and reducing number of larvae.

Keywords

Copper oxide nanoparticles Poecilia reticulata Parturition time Reproductive success Survival rate 

Notes

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors thank all the people that helped them to complete this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare no potential conflicts of interest associated with this research.

References

  1. 1.
    L. Yan, Y. B. Zheng, F. Zhao, S. Li, X. Gao, B. Xu, P. S. Weiss, and Y. Zhao (2012). Chem. Soc. Rev. 41, 97.CrossRefGoogle Scholar
  2. 2.
    H. J. Jo, J. W. Choi, S. H. Lee, and S. W. Hong (2012). J. Hazard. Mater. 227–228, 301.CrossRefGoogle Scholar
  3. 3.
    A. M. Yalsuyi and M. F. Vajargah (2017). J. Environ. Treat. Tech. 5, (1), 1.Google Scholar
  4. 4.
    M. Rai, A. Yadav, and A. Gade (2009). J. Biotechnol. Adv. 27, 76.CrossRefGoogle Scholar
  5. 5.
    I. Krzyżewska, J. Kyzioł-Komosińska, C. Rosik-Dulewska, J. Czupioł, and P. Antoszczyszyn-Szpicka (2016). Arch. Environ. Prot. 42, (1), 87.CrossRefGoogle Scholar
  6. 6.
    M. F. Vajargah, S. A. Hossaini, and A. Hedayati (2013). J. Toxicol. Environ. Health Sci. 5, (6), 106.CrossRefGoogle Scholar
  7. 7.
    L. Song, M. G. Vijver, W. J. G. M. Peijnenburg, T. S. Galloway, and C. R. Tyler (2015). Chemosphere 139, 181.CrossRefGoogle Scholar
  8. 8.
    A. M. Yalsuyi and M. F. Vajargah (2017). J. Coast. Life. Med. 5, (4), 141.CrossRefGoogle Scholar
  9. 9.
    M. Pagano, C. Porcino, M. Briglia, E. Fiorino, M. Vazzana, S. Silvestro, and C. Faggio (2017). Int. J. Environ. Res. 11, (2), 207.CrossRefGoogle Scholar
  10. 10.
    M. A. Burgos-Aceves, A. Cohen, G. Paolella, M. Lepretti, Y. Smith, C. Faggio, and L. Lionetti (2018). Sci. Total Environ. 645, 79.CrossRefGoogle Scholar
  11. 11.
    C. Faggio, V. Tsarpali, and S. Dailianis (2018). Sci. Total Environ. 613, 220.CrossRefGoogle Scholar
  12. 12.
    E. Fiorino, P. Sehonova, L. Plhalova, J. Blahova, Z. Svobodova, and C. Faggio (2018). Environ. Sci. Pollut. Res. Int. 25, (9), 8542.CrossRefGoogle Scholar
  13. 13.
    M. F. Vajargah, M. R. Imanpoor, A. Shabani, A. Hedayati, and C. Faggio (2019). Microsc. Res. Tech.  https://doi.org/10.1002/JEMT.23271.Google Scholar
  14. 14.
    A. Stara, R. Bellinvia, J. Velisek, A. Strouhova, A. Kouba, and C. Faggio (2019). Sci. Total Environ. 665, 718.CrossRefGoogle Scholar
  15. 15.
    B. Nowack and T. D. Bucheli (2007). Environ. Pollut. 150, (1), 5.CrossRefGoogle Scholar
  16. 16.
    Y. N. Chang, X. Zhang, J. Zhang, and G. Xing (2012). Materials 5, 2850.CrossRefGoogle Scholar
  17. 17.
    A. Hedayati, M. F. Vajargah, A. M. Yalsuyi, S. Abarghoei, and M. Hajiahmadyan (2014). J. Coast. Life Med. 2, (11), 841.Google Scholar
  18. 18.
    C. Faggio, M. Pagano, R. Alampi, I. Vazzana, and M. R. Felice (2016). Aquat. Toxicol. 180, 258.CrossRefGoogle Scholar
  19. 19.
    G. Capillo, S. Silvestro, M. Sanfilippo, E. Fiorino, G. Giangrosso, V. Ferrantelli, I. Vazzana, and C. Faggio (2018). Chem. Biodiversity.  https://doi.org/10.1002/cbdv.201800044.Google Scholar
  20. 20.
    P. Sehonova, Z. Svobodova, P. Dolezelova, P. Vosmerova, and C. Faggio (2018). Sci. Total Environ. 631–632, 789.CrossRefGoogle Scholar
  21. 21.
    M. F. Vajargah, A. M. Yalsuyi, M. Sattari, and A. Hedayati (2018). J. Environ. Health Sci. Eng. 5, (2), 61.Google Scholar
  22. 22.
    A. Stara, J. Kubec, E. Zuskova, M. Buric, C. Faggio, A. Kouba, and J. Velisek (2019). Chemospere 224, 616.CrossRefGoogle Scholar
  23. 23.
    N. Humtsoe, R. Davoodi, B. G. Kulkarni, and B. Chavan (2007). Raff. Bull. Zool. 14, 17.Google Scholar
  24. 24.
    F. Fazio, C. Faggio, S. Marafioti, A. Torre, M. Sanfilippo, and G. Piccione (2012). Cah. Biol. Mar. 53, 213.Google Scholar
  25. 25.
    F. Fazio, S. Marafioti, A. Torre, M. Sanfilippo, M. Panzera, and C. Faggio (2013). Ichthyol. Res. 60, (1), 36.CrossRefGoogle Scholar
  26. 26.
    S. Subashkumar and M. Selvanayagam (2014). Int. J. Sci. Res. Publica 4, (3), 2250.Google Scholar
  27. 27.
    M. F. Vajargah and A. Hedayati (2014). J. Coast. Life Med. 2, (7), 511–514.Google Scholar
  28. 28.
    A. E. Magurran Evolutionary Ecology: The Trinidadian Guppy, 1st ed (Oxford University Press, New York, 2005), pp. 15–27.CrossRefGoogle Scholar
  29. 29.
    F. Savorelli, L. Manfra, M. Croppo, A. Tornambè, D. Palazzi, S. Canepa, P. L. Trentini, A. M. Cicero, and C. Faggio (2017). Biol. Trace Elem. Res. 177, (2), 384–393.CrossRefGoogle Scholar
  30. 30.
    V. Aliko, M. Qirjo, E. Sula, V. Morina, and C. Faggio (2018). Fish Shellfish Immunol. 76, 101–109.CrossRefGoogle Scholar
  31. 31.
    N. Gobi, B. Vaseeharan, R. Rekha, S. Vijayakumar, and C. Faggio (2018). Ecotoxicol. Environ. Saf. 162, (2018), 147.CrossRefGoogle Scholar
  32. 32.
    M. M. H. C. M. Valko, H. Morris, and M. T. D. Cronin (2005). Curr. Med. Chem. 12, (10), 1161.CrossRefGoogle Scholar
  33. 33.
    V. Aliko, G. Hajdaraj, A. Caci, and C. Faggio (2015). Braz. Arch. Biol. Technol. 58, (5), 750.CrossRefGoogle Scholar
  34. 34.
    G. Isani, M. L. Falcioni, G. Barucca, D. Sekar, G. Andreani, E. Carpenè, and G. Falcioni (2013). Ecotoxicol. Environ. Saf. 97, 40.CrossRefGoogle Scholar
  35. 35.
    M. F. Vajargah, A. M. Yalsuyi, A. Hedayati, and C. Faggio (2018). Microsc. Res. Tech. 81, (7), 724–729.CrossRefGoogle Scholar
  36. 36.
    C. Peng, C. Shen, S. Zheng, W. Yang, H. Hu, J. Liu, and J. Shi (2017). Nanomaterials 7, (10), 326.CrossRefGoogle Scholar
  37. 37.
    A. Keller, S. McFerran, A. Lazareva, and S. Suh (2013). J. Nanopart. Res. 15, 1692.CrossRefGoogle Scholar
  38. 38.
    A. H. Battez, R. González, J. L. Viesca, J. E. Fernández, J. M. DíazFernández, A. Machado, R. Chou, and J. Riba (2008). Wear 265, (3–4), 422.CrossRefGoogle Scholar
  39. 39.
    M. Ghane, B. Sadeghi, A. R. Jafari, and A. R. Paknejhad (2010). Int. J. Nano Dimens. 1, (1), 33.Google Scholar
  40. 40.
    X. Pan, J. E. Redding, P. A. Wiley, L. Wen, J. S. McConnell, and B. Zhang (2010). Chemosphere 79, 113.CrossRefGoogle Scholar
  41. 41.
    M. A. Burgos-Aceves, A. Cohen, Y. Smith, and C. Faggio (2018). Ecotoxicol. Environ. Saf. 148, 995–1000.CrossRefGoogle Scholar
  42. 42.
    M. J. Moosavi and V. A. J. Shamushaki (2015). J. Aquacult. Res. Dev. 6, (2), 305.CrossRefGoogle Scholar
  43. 43.
    N. Adam, A. Vakurov, D. Knapen, and R. Blust (2015). J. Hazard. Mater. 283, 416–422.CrossRefGoogle Scholar
  44. 44.
    T. L. Rocha, A. P. R. dos Santos, Á. T. Yamada, C. M. de Almeida Soares, C. L. Borges, A. M. Bailão, and S. M. T. Sabóia-Morais (2015). Environ. Toxicol. Pharmcol. 40, (1), 175–186.CrossRefGoogle Scholar
  45. 45.
    T. Dorrington, J. Zanette, F. L. Zacchi, J. J. Stegeman, and A. C. Bainy (2012). Aquat. Toxicol. 15, 106.CrossRefGoogle Scholar
  46. 46.
    A. P. R. Santos, T. L. Rocha, C. L. Borges, A. M. Bailão, C. M. Almeida Soares, and S. M. T. Sabóia-Morais (2017). Chemosphere 168, 933.CrossRefGoogle Scholar
  47. 47.
    A. M. Antunes, T. L. Rocha, F. S. Pires, M. A. Freitas, V. R. M. C. Leite, S. Arana, and S. M. T. Sabóia-Morais (2017). J. Appl. Toxicol. 37, (9), 1098.CrossRefGoogle Scholar
  48. 48.
    S. Bao, Q. Lu, T. Fang, H. Dai, and C. Zhang (2015). Appl. Environ. Microbiol. 81, (23), 8098.CrossRefGoogle Scholar
  49. 49.
    M. M. Chorehi, H. Ghaffari, S. A. Hossaini, E. H. N. Niazie, M. F. Vajargah, and A. Hedayati (2013). Int. J. Aquat. Biol. 1, (6), 254.Google Scholar
  50. 50.
    M. F. Vajargah and A. Hedayati (2017). Transylv. Rev. Syst Ecol. Res. 19, (3), 85.Google Scholar
  51. 51.
    A. M. Yalsuyi, A. Hedayati, M. F. Vajargah, and H. Mousavi-sabet (2017). J. Environ. Treat. Tech. 5, (2), 83.Google Scholar
  52. 52.
    M. Amiri, Z. Etemadifar, A. Daneshkazemi, and M. Nateghi (2017). J. Dent. Biomater. 4, (1), 387.Google Scholar
  53. 53.
    G. Song, W. Hou, Y. Gao, L. Lin, Z. Zhang, Q. Niu, R. Ma, L. Mu, and H. Wang (2016). Bot. Stud. 57, (3), 2.Google Scholar
  54. 54.
    R. T. Di Giulio and D. E. Hinton The Toxicology of Fishes, 1st ed (CRC Press, Boca Raton, 2008), p. 1096.CrossRefGoogle Scholar
  55. 55.
    A. Kodric-Brown and P. F. Nicoletto (2001). Am. Nat. 157, (3), 316.CrossRefGoogle Scholar
  56. 56.
    R. J. Griffitt, R. Weil, K. A. Hyndman, N. D. Denslow, K. Powers, D. Taylor, and D. S. Barber (2007). Environ. Sci. Technol. 41, 8178.CrossRefGoogle Scholar
  57. 57.
    O. Duman and S. Tunc (2009). Microporous Mesoporous Mater. 117, 331.CrossRefGoogle Scholar
  58. 58.
    M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, and M. R. Wiesner (2009). Nat. Nanotechnol. 4, (10), 634.CrossRefGoogle Scholar
  59. 59.
    K. Midander, P. Cronholm, H. L. Karlsson, K. Elihn, L. Möller, C. Leygraf, and I. O. Wallinder (2009). Small 5, (3), 389.CrossRefGoogle Scholar
  60. 60.
    G. Oberdorster, E. Oberdorster, and J. Oberdorster (2005). Environ. Health Perspect. 113, (7), 823.CrossRefGoogle Scholar
  61. 61.
    K. W. Powers, M. Palazuelos, B. M. Moudgil, and S. M. Roberts (2007). Nanotoxicology 1, (1), 42.CrossRefGoogle Scholar
  62. 62.
    M. Ferrari (2008). Nat. Nanotechnol. 3, (3), 131.CrossRefGoogle Scholar
  63. 63.
    A. Verma and F. Stellacci (2010). Small 6, (1), 12.CrossRefGoogle Scholar
  64. 64.
    U. S. EPA (EPA 2017). Technical Overview of Ecological Risk Assessment—Analysis Phase: Ecological Effects Characterization: Ecotoxicity Categories for Terrestrial and Aquatic Organisms. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-0.
  65. 65.
    A. Jahanbakhshi, A. Hedayati, and A. Pirbeigi (2015). Nanomed. J. 2, (3), 195.Google Scholar
  66. 66.
    S. Lin, Y. Zhao, Z. Ji, J. Ear, C. H. Chang, H. Zhang, C. Low-Kam, K. Yamada, H. Meng, X. Wang, and R. Liu (2013). Small 9, (9–10), 1776.CrossRefGoogle Scholar
  67. 67.
    A. A. Abdel-Khalek, M. A. M. Kadry, S. R. Badran, and M. A. S. Marie (2015). J. Basic Appl. Zool. 72, 43.CrossRefGoogle Scholar
  68. 68.
    B. J. Shaw and R. D. Handy (2011). Environ. Int. 37, 1083.CrossRefGoogle Scholar
  69. 69.
    A. Srinonate, W. Banlunara, P. Maneewattanapinyo, C. Thammacharoen, S. Ekgasit, and T. Kaewamatawong (2015). Thai. J. Vet. Med. 45, (1), 81.Google Scholar
  70. 70.
    J. S. Weis (2014). Toxics 2, (2), 165.CrossRefGoogle Scholar
  71. 71.
    M. F. Vajargah, A. M. Yalsuyi, and A. Hedayati (2018). J. Iran. Fish. Sci. 17, (3), 564.Google Scholar
  72. 72.
    M. F. Vajargah, A. M. Yalsuyi, and A. Hedayati (2017). J. Pollut. 3, (4), 589.Google Scholar
  73. 73.
    Y. Sun, G. Zhang, Z. He, Y. Wang, J. Cui, and Y. Li (2016). Int. J. Nanomed. 11, 905.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Forouhar Vajargah
    • 1
  • Ahmad Mohamadi Yalsuyi
    • 2
  • Masoud Sattari
    • 3
  • Marko D. Prokić
    • 4
  • Caterina Faggio
    • 5
    Email author
  1. 1.Department of Fisheries, Faculty of Natural ResourcesUniversity of GuilanSowmehsaraIran
  2. 2.Department of Aquaculture, Faculty of Fisheries and EnvironmentGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
  3. 3.Department of Marine Sciences, Caspian Sea Basin Research CenterUniversity of GuilanRashtIran
  4. 4.Department of PhysiologyInstitute for Biological Research “Sinisa Stankovic”, University of BelgradeBelgradeSerbia
  5. 5.Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly

Personalised recommendations